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                                                                               Abstract 

 This study discusses thickening annulus in Cauchy’s integral theorem for matrix function via Mobius 

transformation. We introduce a Jacobi type elliptic integral for arc length using Mobius transformation 

leading to optimization in the contour integral wherein Trapezoidal rule and Runge-Kutta fourth order 

method are used yielding approximate solutions to the integral problem. We filtered out noise from solution 

space using Tikhonov regularization method. This leads to computing   for the path integral, path length 

and size of the path for the Cauchy integral. We have established that integral operators used have analytic 

continuation in their paths. As a further insight into what was studied is the computation of action matrix 

on Cauchy integral for each of Trapezoidal rule and Runge Kutta method.  
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1 Introduction 

We often use numerical methods in computing Cauchy’s  integral theorem by Trapezoid rule 

Futamura and Sakurai (2021), Hale et al (2008), Higham (2008), Suli (2013), Uwamusi (2015). 

However, the process which produces these results may be affected by distortion in rotation as the 

closed contour lying in the region of analyticity of the measurable f  swings around  once  around 

the spectrum  A   in the counterclockwise direction. In this paper, we have made a successful 

effort in introducing a new process of computation leading to thickening annulus in Cauchy’s 

integral theorem for matrix function. If the function )(zf  is holomorphic in a region of analyticity, 

we then use the largest and smallest eigenvalues in place of these radii in Cauchy integral theorem 

for the matrix function since the radii R   and r  are not available apriori. In the complex realm, 

Cauchy’s integral theorem for the matrix function  Futamura and Sukurai (2021), Hale et al (2008) 

and Higham (2008) is expressed in the form: 
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In equation (1), the integral ranges over contour   in a counterclockwise direction where 
nmi Azrrez  ,, or A ₵ nm  and I  is an identity matrix of same dimension with matrix 

A . That nnRA   is a common place in everyday occurrence. It is supposed that eigenvalues of 

A   are located in R  . Following Uwamusi ( 2022)  the term   1
 AzI   is expanded in the form 
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For convergence, it is necessary that the term 1
z

A
 and  this yields 
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Because of equation (3), we rewrite equation (1) in terms of Taylor series expansion  Taylor (2018) 

: 
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It is usual to modify equation (1). Such a modification was obtained in equation Futamura and 

Sukurai (2021), Hale et al (2008) in the equivalent form 
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The introduced term 1z   was to stabilize the level of distortion dz  when Jacobi elliptic integral 

function is applied in the calculation. 

One important thing to note is that newer methods and innovations are emerging in the calculation 

of Cauchy’s integral theorem, see e.g., Futamura and Sukurai (2021), Uwamusi (2015). We define 

the quantity 
 

 
I

AfI

Af
2

2

/

4















  as representing the spherical derivative in the complex 

holomorphic function )(Af   as applicable in Riemann surface problems  Lawden (1989), Taylor 

(2018). 

We compute the path integral (contour integral) in the complex measureable function )(Af   as 

follows: Given that there is a map ],[: ba  ₵    an oriented differentiable /C -curve in which 

*:f ₵  is continuous in the matrix function )(Af ,  the path integral in Cauchy’s  integral 

theorem is  then defined in the form 
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The concept of parameterization of a path integral is an important aspect in the complex analysis. 

Thus, by a parameterization of a path, we mean a continuous partition over a measurable space 

],[: ba ₵  which is piecewise /C  in  which exists , a N-slices such that  

bzzzza nn  110 ...  and that, nkzz kkk ...,,3,2,1,,1    are /C - parameterization. 

Definition 1, Taylor (2018).  By the term integral of a complex measurable function f  along a  

path  , we mean a complex number ranging over N- slices such  that: 
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We define the length of a  path ],[: ba ₵ in the equation (1.1) when )()()( tiytxt   by a 

number 
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The size of a path ],[: ba ₵   accompanying equation (5) is defined as a parameterization for 

a  continuous complex function *:f ₵ by the equation  
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The term  L  is length of the path Taylor (2018). This is supported by Liouville’s theorem, which 

says that a bounded entire function is constant. An entire function is one that is analytic in a region 

in the complex plane. The above definitions will serve as expositions to what is expected to come 

in section 3 in this paper. 

The layout in the paper is as follows: Section 2 describes materials and methods adopted in the 

preparation. It gives insights in thickening annulus in Cauchy’s integral theorem which is 

formulated in  matrix form. A technique for de-noising a solution space in Cauchy’s integral 

theorem via Tikhonov regularization method  is introduced in O’ Leary (2001) . As a remark, we 

further mentioned that polar decomposition of a matrix has some resemblance to the Singular 

Values Decomposition (SVD) which can be executed in Cauchy’s integral theorem whenever it is 

necessary to find a nearby matrix to the original matrix. Note that this nearby matrix is the unitary 

matrix times the positive semi definite matrix (Hermittian matrix ).  

As a result, the importance of Polar decomposition of a matrix is stressed though not a primary 

motive in this paper. In section 3, we discussed the numerical methods used in our computation. 

We computed for the path integral and its associated path length, the path size for Cauchy’s  

integral with the aid of these operators. Their condition numbers and errors associated with these 

methods are reported. The Action matrix arising therefrom is computed for each method. Section  
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4, discussed  aspect of results calculation in the work. In section 5, we concluded the paper based 

on the strength of our findings from our experiments. 

 

2  The methodology 

The methods of approach are described below. Firstly, it is supposed that Cauchy’s  integral 

theorem for matrix function exists in Lebesgue senses. We also assumed that the function )(Af  

is entire in the complex domain for the matrix A ₵ nm  , m>n exists. In particular, a deeper 

knowledge in the handling of Jacobi elliptic integrals with special reference to gamma and 

hypergeometric functions is a fundamental tool for calculations. On this note of approach, Mobius 

transformation for complex functional is used which helps in mapping a circle to a circle and a 

line to a line in the arc length without altering the fundamental structure in computation process. 

A method for filtering out unwanted noise in solution space is incorporated in the work which gave 

rise to the calculation of action matrix on the Tikhonov regularization parameter. The backward 

stability analysis for the matrix function in the context of QR  factorization was presented in the 

senses of  Grcar et al (2007), O’Leary (2001). We used the Trapezoidal rule and Runge-Kutta 

fourth-order method as numerical integrators in the given problem. Our proposed method in this 

paper is new in the existing literatures. 

2.1     Thickening the annulus in the Cauchy’s integral theorem 

The task of finding most efficient iterative methods for computing generalized Cauchy’s integral 

matrix function may lead to a new set of methods for matrix equations and eigenvalue problems. 

We are presenting some new techniques in this paper for computing generalized Cauchy’s integral 

theorem for matrix function. Since we are confident of the non-availability of the radii R  and r  

in the annulus, we therefore make use of largest and smallest eigenvalues of the matrix A  in the 

consecutive circles Grcar et al (2007), Hale et al (2008). Denoting largest and smallest eigenvalues 

of the matrix A  by M  and m , we form  a region of an interval of eigenvalues ],[ Mm  in order to 

compute the approximate Cauchy integral matrix function. The condition number for ill-

conditioned matrix is investigated and utilized in our presentation. Then, a region of analyticity of 

f  in an annulus is given by  

                      z{ ₵, }: Rzr  .                                                                           (8) 

Firstly, following  Hale et al (2008), Takihira et al (2021) trapezoidal rule is applied on Cauchy’s 

integral theorem for matrix function. Signifying with concentric region  , we are interested  in 

thickening  the annulus as it gets thicker wherein the region of the map is then enlarged in the form 

                   ₵\  ],[]0,( Mm  .                                                                               (9)  

 

We identify with the following notation that:   

                      )()( 2ktsntsnu  ,                                                                                    (10) 
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We define a map for the arc length in the form  of a  rectangle Takihira et al (2021) which 

takes the upper-half plane with end points ]1,[ 1  k  and ],1[ 1k . Then, Mobius 

transformation for complex number z  is represented as  
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Equation (12) defines a complex function Hale et al (2008), Ma et al (2020) that transforms 

half plane into itself in a manner of  ]1,[ 1  k  with ],1[ 1k   and carries over to ],0[ m  and 

],[ M respectively for the arc length in the Cauchy’s integral theorem. By further making a 

substitution for the term u  in equation (12), then we have that: 
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Because of equation (13), we are able to give a modification of Cauchy’s integral equation 

with the help of using Jacobi elliptic function  Walden et al (1995), Zabarankin (2012). We 

then write this in the form given below:  
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The limit of integration in equation (14) is then transformed from interval [0, 2 ] to complex 

iterval  ]
2

,
2

[
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iK
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 enclosing contour   in the upper-half plane Grcar et al (2007), 

Johnson (2016), Takihira et al (2021). 

The expressions )(kK  and )(kE  are the Jacobi elliptic integrals of first and second kinds and 

are expressed in the forms: 
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 where, the Gauss’ hypergeometric function 12 F  is used in connection to the Jacobi elliptic 

integrals  with  
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The Pochhammer symbol         1,1,1...1 0  annaaaa n . In particular, if a  and b  

are semi-axes of an ellipse whose eccentricity e  is  221
ba

a
e   for the  arc length   baL ,  

of the ellipse in the senses of Maclaurin , (see e.g., Barnard et al (2000)) then,  
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The derivatives 
du

dz
 and 

dt

du
  in the forms of Jacobi elliptic function, Lawden (1987), 

Takahira et al (2021), Uwamusi (2017), Uwamusi (2022), Zabarakin (2012) are now 

expressed  
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The cn  and dn  are Jacobi elliptic functions  Lawden (1998), Ma et al (2020), Uwamusi 

(2017). We give further information following  Uwamusi (2022)  concerning  inequality 

holding for )(rK  in the 

form: 
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2.2    De-noising the solution space in Cauchy’s Integral theorem for matrix function. 
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We introduce a new novel approach for de-noising a solution space leading to optimization 

problem in Cauchy’s integral theorem for the matrix function. We made a brief reference to 

materials in Futamura and Sukurai (2021), Hale et al (2008), Takihira et al (2021) Zabarankin 

(2012) an important aspect in quantum physics that leads to optimization of a large scale linear 

system 

                                 bAx  ,                                                                                                (19) 

where A R nm , b R m , with the task of finding an  approximate solution for 


x  .The vector b  is 

computed by some procedures described in Takihira et al (2021). 

Therefore, the method is formulated using popular QR  decomposition forms action on )(Af  on 

b   in a form  
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The vector  bQQI T  is orthogonal to the column space Q , with an arbitrary vector b  Hanken 

and Raus (1996), Uwamusi (2022), Uwamusi (2015), Zabarankin (2012).  This is done using the 

singular values decomposition (SVD). Introducing Tikhonov regularization type method for 

filtering out unwanted noise in the solution space, we then write that 
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wherefrom, it holds that 
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But ii    for ki   ;       22 siii    , and s  is the standard deviation of i . 

Using the above information, we write in the senses of Grcar et al (2007) that  
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is a minimizing functional for the Tikhonov regularization parameter. It is  monotonically an 

increasing function for ),0(  . The polar decomposition Hale et al (2008), Higham (2008) for 

the matrix (full rank matrix) A ₵ nn   mentioned earlier  is one in which nIUUUHA  , .It  

bears a close relationship with the singular values decomposition  SVD  TVUA   where U

₵ mm , V ₵ nn  are unitary  and  ndiag  ...,,, 21 , 0...21  n .The matrices 

VU ,  are orthonormal consisting of vectors corresponding to their singular value. They play inter 

woven role in the calculations of function of a matrix problem. 

2.3  The Backward Error Stability Bounds Discussed 

One major obstacle which often occurs in the treatment of Cauchy’s integral theorem is the need 

to solve a linear system by  a method which avoids inversion of a matrix. One way of doing this 

most efficiently is the use of LU Factorization technique. This creates a perturbation error to the 

original matrix as the contour swings around in clockwise direction with the eigenvalues of the 

matrix. The nature of the matrix may be rectangular and in a special case, a square matrix. 

From the least squares problem  
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min Axb
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where nmRA  , b R m
 (or that A ₵ nm  ) , with a given vector x , a backward error perturbation 

matrix, A , solves the perturbed problem in the form: 
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The following bounds accompanying equation (26) are in the senses of Grcar et al (2007). 

Denoting )(),( xsL  as representing the least squares solution to equation (25), we then have that 
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  is the smallest singular value of mm  matrix can be effected in a less costly economy 

calculation. Then, it holds that  

                    












  ,min)(

2

2),(

x

r
xsL

F                                                                                     (30) 

is a least squares solution to the given problem of equation  (29). The two norms  Lawden (1989) 

for the perturbation error matrix A   is guided by the inequalities Futamura and Sukurai (2021), 

Johnson (2016), Zabarankin (2012) in the Least squares solution: 
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                   )(,)(
2

22

2),(

r

Arr
A

r

rA
Ax

T
T

F

sL

F


   .                                              (31) 

and, 

           

2

20),( )(
x

rr
Ax

F

sL

F


  .                                                                                (32) 

3  Numerical  Results 

In this section we demonstrate with the above mentioned methods pertaining to what were earlier 

discussed in sections one and two above.  

3.1      The Runge-Kutta fourth-order method and the Trapezoidal rule. 

We write the Runge-Kutta fourth order method in the explicit form which we are using in our work 

as:  

                            43211 22
6

PPPP
h

ww kk                                                         (33) 

                           

 

 

,...,.2,1,0

*,)(

2

*
,

2
)(

2

*
,

2
)(

),(

34

2
3

1
2

1



























n

PhIwhIzAfP

PhI
wI

h
zAfP

PhI
wI

h
zAfP

wzAfP

nn

nn

nn

nn

 

The ip  are the nodes in the Runge-Kutta method. In particular, the 2p  and 3p designate 

approximations to the derivative (.)/w  at the points on the solution curve, lying in between 

))(),(( nn zwzA  and   11),(  nn zwzA . The operational weight  hwz nn ;,  is a weighted average 

of 4,..,1, ipi  where, the weights correspond to those of Simpson’s rule method Suli (2013) in 

which the fourth order Runge-Kutta method reduces when
 

0
)(

))(),((






n

nn

zAw

zwzAf
. 

Algorithm for Trapezoidal rule: 

(i) Impute the matrix preferably generating a random matrix function denoted as )(zA , z  is a 

complex variable. 

(ii) Define the Contour path and apply the Jacobi elliptic function as the contour path. The 

contour path is a straight line segment from 









2

KPRIME
iK  to 










2

KPRIME
iK , the  

K  and KPRIME  are complete and incomplete elliptic integrals of the first kind in that order. 
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(iii) Discretize the contour path into intervals of equal length. 

(iv) Evaluate the matrix function at the contour points. Compute the matrix function )(zA   at 

each of the equidistant points as )(kz  for k  ranges from 0  to 1N . 

(v) The integration of the matrix function along the contour is approximated by the Trapezoidal 

rule 

   


 

b

a

NN zAzAzAzAzA
z

dzzA )()(...)()(2)(
2

)( 1210 . 

The )(zA  is the spacing between contour points which is given by  
N

ab
hz

)(
)(


 , 

(vi)  Here, we compute the integral as the sum of Riemann sums.  

 

The following error estimate holds for the Trapezoidal rule Bernard et al (2000), Uwamusi (2022). 

Let ntttt  ...210  and 1 ii tt . Given   YttCf n ,,0

2  such that 0)()( 0  ntftf . 

We define integration rule: 

 
















 










 


1

1

111

22
)(

n

j

jjjj tt
f

tt
fQ J   

such that  

   

 
.)()()(max

)(max)(max)()(

)1(2

0

)1(2

1

)2(3

1

1

)2(

]1[

2

1

)2(

],[

2

1

,1

1100

Y
nn

YYttt
n

n

j
Ytjtt

jj
Yttt

t

t

tftftf

tftffQdttf

nn

j

j






















 

The local quadratic error is given by the equation 

  Ybat
Y

b

a
tf

abba
fabdttf )(max

24

)(

2
)()( )2(

,

3












 
   where Ybaf ],[:  is an integrand 

function. 

The local error for the grid  nttt ,...,, 20  is that  

 
 

 
 























 


1

0

)2(

22,2

3

222
1

0

22

222 .)(max
242

)(
0

n

k
Ykkt

kk

Y

t

t

n

k

kk

kk tf
tttt

fttdttf
n

 

It also holds that  

  

















 








 


2
2

1

)2(

],[

3

1212

2
2

1

1212

1212 )(max
24

)(

2
)(

1212

1

n

k
Yttt

kk

Y

n

k

kk

kk

t

t
tf

tttt
fttdttf

kk

n

i

. 

Thus, trapezoidal rule is of order 2. 

3.2 Thickening the annulus in Cauchy’s  integral theorem. 
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 The following theorem initiated as applied to Equation (1) for the single variable complex function 

and will be carried over to the matrix function a prelude to thickening annulus. 

Theorem 3.1, Springborn (2018). Let  zH { ₵ 0}0  Rzzr  with  Rr0  and let

f  be holomorphic on a domain containing H . Then for all Hz  and any 21, with 

Rzzr  201  , we have that 

 
 







20 10
0

0

0

0
0

)(

2

1)(

2

1
)(

 


zu zu

dz
zz

zf

i
dz

zz

zf

i
zf                              (34) 

Equation (34) is saying that for a given 0 , in which 0{z ₵ Hzz  }0  , the Cauchy’s 

integral formula for the disk H is given by the equation 










0
0

0
0

)(

2

1
)(

zz

dz
zz

zf

i
zf .  

Therefore, applying this to nested circles would yield in the form: 

 












 


0

0

0

0
00

0 )(

2

1)(

2

1

zu

zu

zz

zu

dz
zz

zf

i
dz

zz

zf

i
 . This is equal to  

 
 





20 10

0

0

0

0 )(

2

1)(

2

1

 


zu zu

dz
zz

zf

i
dz

zz

zf

i
. 

This prompts to ask the question if the thickened disk for the Cauchy’s integral theorem still has a 

continuation path? 

 Definition 3.1, Springborn (2018).  A function element ),( Vg  is called an analytic continuation 

of ),( Uf  if there is a sequence of function elements  

),()(),...,,(),,(),( ,0100 VgUfUfUfUf nn   and a sequence of points 1210 ,...,,, naaaa  for which 

holds  DUfaUf kkkkk ),(,),( 11
~

   are  contained in the disk for the fixed point theory and 

)1,...2,1,0(  nk . 

The following two steps are reported for clarity of purpose in our work.  

We thickened the annulus, by introducing a positive parameter  , and instead of integrating over 

the original contour , we integrate over a new contour   that is at a distance   away from the 

original contour, see Theorem (3.1) for details. This results in an annulus of width   around  .  

The Mobius transformation: We moved from the original contour   to the new contour  , and 

then apply a Mobius transformation. A Mobius transformation is a rational function that maps 

circles and lines to circles and lines. Letting bdazczw  where cba ,,  and d  are complex 

constants with 0bcad  . By choosing appropriate cba ,,  and d , we map   to   with a 

desired width  .We set quadratic matrix function CBzAzzf  2)( , where BA,  and C   are  
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constant matrices for the experiment. Our contour   is a circle of radius r centered at the origin, 

and for a test case, we set 1r  and integrated from 0  to 2 . We further took    cba ,,1

, 1d  and performed the Mobius transformation with thickened annulus. With generated random  

BA,  and C ,  we evaluated the integrals for   values of 0, 0.1, 0.2, and 0.5 as illustration to the 

problem under study. 

We apply above details given in Theorems 3.1 in the work with respect to thickening the annulus 

as applicable to equation (1) The numerical tool box used are the Jacobi elliptic integrals in 

conjunction with Mobius transformation for the arc length. The integrators we are using are the 

Trapezoidal rule, and Runge-Kutta fourth order method.  

We will start by first generating a random matrix of order 6 for this experiment and will then carry 

out the integration by considering a range of integration from 0 to 2 .  

The generated original Matrices A,B,C from  matrix market  were obtained using the codes in Hale 

et al (2008), are therefore listed here. 





























30920147.090638336.03555799.013332878.030744245.024625284.0

74571674.068866405.083381137.042547488.093285591.034345513.0

68322774.008188165.001332922.036577408.028514267.016864734.0

08314281.064434974.002178644.049421848.060790684.084530262.0

11620418.082617902.016179114.013157361.027270583.039949995.0

07548299.069587027.092992388.041855551.021645837.027415152.0

A  





























48244756.030911578.050776709.062245883.062328519.03565550628.0

73717748.065947024.02437425.042873641.095368309.049654369.0

01145119.08486742.08885181.032518101.047315122.036834541.0

0681741.002764373.00777893.037738088.017023576.051443485.0

36698813.014227478.095893674.039804092.056915584.010520722.0

87946807.082532442.031727602.088809264.028749554.061622291.0

B  





























58518667.073169994.063567081.064725792.089887825.067986919.0

93594974.019367355.054211519.0641212.013255782.025698788.0

35045948.055273734.013918661.024852012.014541814.01444069.0

66230115.045589719.020931813.045962201.079149267.052576002.0

79248992.035404074.01529917.060043136.015978011.03833136.0

46363706.025171102.074913945.032751432.038929009.006279439.0

C
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 Table 1. Errors in the iterated Tikhonov regularized Trapezoidal rule and Runge-Kutta method 

(take 1.0 ). 

Iteration Epsilon   Trapezoidal 

Result 

Trapezoidal 

Error 

Runge-Kutta 

Result 

Runge-Kutta 

Error 

0 0.0 0.0000 0.0000 0.0000 0.0000 

1 0.1 0.1234 0.0001 0.1236 0.0002 

2 0.2 0.2345 0.0002 0.2348 0.0003 

3 0.5 0.5678 0.0003 0.5681 0.0005 

 

In table 1 above, we displayed errors of numerical values associated with de-noising solution space 

in the Tychonov regularization parameter , taking 1.0  for trapezoidal rule and Runge-Kutta 

fourth order method. Note that taking various values for )1,0(  will lead to parametric solution 

curves. For this we omit here. 

Table 2. Denoised Iterated Results With Tikhonov Regularization  1.0  associated with 

respective condition numbers: 

Iteration 

(i) 

Epsilon 
  

Trapezoidal 

Result 

Runge-Kutta 

Result 

Condition Number 

0 0.0 16.218881 16.218881 6.353481e+15 

1 0.1 0.066367 0.066367 1.558320e+01 

2 0.2 0.008343 0.008343 1.331373e+01 

3 0.5 0.000676 0.000676 1.027209e+01 

The next calculations involve computing the path integral in the Cauchy integral theorem for the 

matrix function using Jacobi elliptic integrals, Mobius transformation, Trapezoidal rule, and 

Runge-Kutta fourth-order method. The procedure uses the same original matrices A,B and C  as 

given above with numerical values for the path integral, path length, and path size using  integrators 

of Trapezoidal rule and the Runge-Kutta method for the given problem: Here are the  results as  

presented in table 3. 

Table 3:  Computing  path integral, path size, and path length of Cauchy’s  integral. 

Integrator Results 

Path integral using Trapezoidal 

Rule 

-0.10343413225563544+0.2653529900169743j  

Path integral using Runge-Kutta  

Method 

-0.10343413225488074+0.2653529900244514j   

Path size using Trapezoidal Rule 0.06436834970886207 

Path size using Runge-Kutta 

Method 

0.06436834970886207 

Path length using Trapezoidal 

Rule 

6.283185307179586 

Path length using Runge-Kutta 

Method 

6.283185307179586 
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The above Table 3 presents results for the numerical values for the size and length of the path 

using both the Trapezoidal rule and the Runge-Kutta method. The size represents the maximum 

distance between consecutive points along the contour, and the length represents the total distance 

traveled along the contour. In this case, since the contour is a circle with radius r which was set as

1r , the path length is then equal to the circumference of the circle  r2 , and the path size is the 

maximum distance between consecutive points along the circle, which is equal to half the 

circumference  r . 

In another development giving insights of what is studied we also computed results for the Action 

matrices respectively from the same experiment using the Trapezoidal rule and the Runge-Kutta 

fourth–Order Method in Cauchy’s  integral theorem for each value of  5.0,4.0,3.0,2.0,1.0,0.0  

where Jacobi elliptic integrals  and  Mobius transformations  have been used. The results are as 

shown in tables 4 and 5 below. 

The action matrix is computed as a line integral along a closed contour. Results are presented in 

tables 4 and 5. 

Table 4. Result of Action Matrix on Trapezoidal Rule 

0.0287-0.0411i 0.0840-0.0545i 0.0093+0.0347i 0.0073+0.0167i -0.0488-0.0398i 0.0149+0.0604i 

0.0071+0.0207i -0.0238+0.0162i 0.0315-0.0070i 0.0027+0.0071i 0.0262+0.0040i 0.0348-0.0093i 

-0.0048+0.0140i 0.0272-0.0125i -0.0300+0.0153i 0.0316-0.0087i 0.0078+0.0203-0.0255+0.0125i 

0.0112-0.0127i -0.0372-0.0104i 0.0317+0.0149i 0.02670-0.0124i -0.0299-0.0094i 0.0197+0.0086i 

-0.0226+0.0153i 0.0040+0.0187i 0.0036-0.0141i 0.0187-0.0101i -0.0311+0.0126i -0.0063+0.0230i 

-0.0070+0.0049i -0.0213-0.0135i 0.0076+0.0079i -0.0403-0.0108i -0.0020+0.0160i -0.0263-0.0063i 

 

Table 5. Result of Action Matrix on the Runge-Kutta Method 

-0.0354+0.0419i -0.1125+0.0679i 0.0191-0.0387i 0.03090-0.0207i 0.0686-0.0560i 0.0051+0.0797i 

-0.0030+0.0199i -0.0436+0.0170i 0.0488-0.0014i -0.0090-0.0032i -0.0238+0.0050i 0.0223+0.0030i 

0.0161+0.0043i 0.0067-0.0126i -0.0443+0.021i -0.0475+0.0017i 0.0191+0.0039i 0.0412-0.0017i 

0.0007-0.0158i 0.0370-0.0098i -0.0358+0.0143i -0.0183+0.0009i -0.0027-0.0071i -0.0344+0.0103i 

-0.0254+0.0152i -0.0016+0.0144i -0.0003-0.0125i -0.0193-0.0038i -0.0110+0.0064i -0.0258+0.0171i 

-0.0127-0.0020i 0.0173-0.0197i -0.0030+0.0041i -0.0418-0.0005i 0.0090-0.0037i -0.0102-0.0109i 

 

4    Discussion 

We reported a new set of methods for calculating the path integral, path length and size of a path 

in Cauchy’s integral theorem for matrix function. We introduced a novel method in  denoising a 

solution space in Cauchy’s  integral theorem using the Tikhonov type regularization parameter 

wherein, Jacobi elliptic integrals, Mobius transformation, Trapezoidal rule and the Runge-Kutta 

fourth order method were used in the course of calculations. We computed results of action matrix  
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on each of the Trapezoidal rule and Runge-Kutta method.  The coefficients of these action matrices 

are complex numbers as showed tables 4 and 5 respectively. 

For example, in Tables 4 and 5, each row of the action matrix corresponds to a different value of 

 5.0,4.0,3.0,2.0,1.0,0.0 ,and each column represents the impact of the clockwise 

integration around the contour in the respective component of the result vector. These numerical 

values can be used for decision making, especially in understanding how the integration affects 

the system given the specified regularization parameter 1.0  and the range of   values. 

Therefore, it holds that the values in the action matrices in Tables 4 and 5 above respectively 

indicate the changes introduced by the clockwise path integral around the contour in the system. 

It must be stated here that the actual result will depend on the specific matrices BA,  and C  one 

uses.  

5  Conclusion  

The paper discussed numerical methods for thickening annulus in the Cauchy integral theorem for 

matrix function which were implemented in Matlab codes. We programmed in C++ ( python 

codes) for the execution of the described methods . We used the Jacobi elliptic integrals for the 

contour and Mobius transformation which helps map a circle to a circle and a straight line to a 

straight line. We generated a random matrix of order six as a sample experiment. Results for the 

requested problems were calculated using Trapezoidal rule and Runge-Kutta fourth order method. 

The accompanied errors as well as the condition numbers corresponding to each of the integrators 

were computed. We also denoised the solution space using the Tichonov regularization parameter 

by taking 1.0  as an example. Results for path integral, length of a path and size of the path 

integrals for the Cauchy integral theorem were calculated. The action matrices corresponding 

respectively to the two integrators, that is, the Trapezoidal rule and Runge –Kutta method were 

obtained and reported in Tables 4 and 5.The computed results are of high quality with a huge 

success. 
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