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                                      Abstract 
This study aimed to predict radiotherapy outcome for breast cancer patients using clinical and dosimetric 

parameters through logistic regression analysis. The study made use of One Thousand, Four Hundred and 

Twenty-Two (1422) patients treated for breast cancer at the NSIA Cancer Centre, Lagos University 

Teaching Hospital (LUTH), Lagos State. Multivariate logistic regression analysis is performed in R Studio, 

with the level of significance set at p<0.05. The results show that among the dosimetric parameters, only 

V95 (volume receiving 95% of the prescribed dose) was a significant predictor (p=0.026) of radiotherapy 

outcome. Higher V95 values are associated with better outcomes. Regarding clinical parameters, cancer 

staging emerged as a significant predictor, with stage 3 (odds ratio=4.76, p=0.001) and stage 4 (odds 

ratio=16.17, p<0.001) being associated with poorer outcomes compared to stage 0. Other parameters 

entered into the model did not significantly predict radiotherapy outcome in this cohort of breast cancer 

patients. The study highlights the importance of V95 and cancer staging in predicting radiotherapy 

outcomes and can inform future treatment planning and patient management strategies; which vis-à-vis 

assist in achieving the goal three of the United Nations Sustainable Development Goals (SDG). 
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1 Introduction 
Breast cancer remains one of the most prevalent cancers worldwide, accounting for a significant 

proportion of cancer-related morbidity and mortality among women. Radiotherapy is a cornerstone 

of breast cancer treatment, often used in conjunction with surgery, chemotherapy, and hormonal 

therapy to improve local control and survival rates (Early Breast Cancer Trialists' Collaborative 
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Group, 2011). Despite advances in radiotherapy techniques, predicting treatment outcomes 

remains challenging due to the complex interplay of various clinical and dosimetric factors. 

Clinical parameters such as age, tumour grade, and cancer staging have been well-documented as 

critical determinants of breast cancer prognosis (Goldhirsch et al., 2013). Cancer staging, in 

particular, is a robust predictor of treatment outcomes, with advanced stages associated with poorer 

prognoses (Cianfrocca and Goldstein, 2004). Moreover, recent studies have highlighted the 

importance of dosimetric parameters—specifically, the volume of tissue receiving a particular 

dose of radiation (e.g., V95, V105)—in predicting radiotherapy outcomes (Clark et al., 2016). 

Dosimetric parameters like V95 (volume receiving 95% of the prescribed dose) are particularly 

relevant in the context of three-dimensional conformal radiotherapy (3DCRT) and intensity-

modulated radiotherapy (IMRT). These advanced techniques allow for the precise targeting of 

tumour tissues while sparing surrounding healthy tissues, potentially leading to better clinical 

outcomes (Mackie et al., 1999). Studies have shown that higher V95 values are associated with 

improved local control and survival rates, emphasising the need for accurate dosimetric planning 

(Ritter et al., 2010). 

Despite these findings, there is still a need for comprehensive studies that integrate both clinical 

and dosimetric parameters to predict radiotherapy outcomes more effectively. Logistic regression 

analysis offers a robust statistical method for this purpose, allowing for the assessment of multiple 

predictors simultaneously and the determination of their relative importance (Hosmer et al., 2013). 

This study aims to evaluate the predictors of radiotherapy outcomes in breast cancer patients by 

performing a logistic regression analysis of clinical and dosimetric parameters. By identifying 

significant predictors, this research seeks to enhance treatment planning and patient management 

strategies, ultimately improving the prognosis and quality of life for breast cancer patients. 

 

2 Methodology 
2.1 Study Design and Data Collection 

This retrospective cohort study aimed to evaluate the predictors of radiotherapy outcomes in breast 

cancer patients by analysing clinical and dosimetric parameters. A total of 1422 breast cancer 

patients treated at the Nigeria Sovereign Investment Authority (NSIA) Cancer Centre, Lagos 

University Teaching Hospital, Lagos State, were included in the study. Clinical parameters 

considered included age, cancer staging, and treatment types, while dosimetric parameters 

included planning target volume (PTV), maximum dose (D2), dose to 98% of the volume (D98), 

mean dose (Dmean), volume receiving 95% of the prescribed dose (V95), homogeneity index (HI), 

conformity index (CI), number of fields, prescribed dose, actual delivered dose, and maximum 

dose. 

 

2.2 Data Preprocessing 

Data preprocessing was carried out in R Studio. This involved handling missing values through 

imputation, encoding categorical variables into binary indicators, and standardising continuous 

variables to ensure a mean of 0 and a standard deviation of 1 for easier comparison of coefficients. 

 

2.3 Logistic Regression Analysis 

The logistic regression equation is a family from the Generalized Linear Models (GLMs) (Agresti, 

2015). These models are a flexible generalization of ordinary linear regression that allow for 

response variables to have error distribution models other than a normal distribution. GLMs are 

widely used in various fields such as statistics, biology, and economics due to their flexibility in 
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handling different types of response variables and their ability to model non-linear relationships.  

Logistic regression is a specific type of GLM used for modeling binary outcome variables. It is 

widely used in fields like medicine, social sciences, and machine learning for tasks such as disease 

prediction, risk assessment, and classification (Hosmer, et al., 2013). The logistic regression model 

can be mathematically expressed as: 

logit(𝑃) = ln⁡(
𝑃

1 − 𝑃
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘 

where: 

 𝑃 is the probability of the event occurring (e.g., complication from radiotherapy). 

 ln⁡(
𝑃

1−𝑃
) is the logit function, which is the natural logarithm of the odds. 

 𝛽0 is the intercept term. 

 𝛽1, 𝛽2, … , 𝛽𝑘 are the coefficients of the predictor variables 𝑋1, 𝑋2, … , 𝑋𝑘. 

The odds ratio for each predictor can be interpreted as the change in odds resulting from a one-

unit change in the predictor variable. In this study, the logistic regression model would 

incorporate clinical and dosimetric parameters as predictors. 

 

2.4 Application to This Study 

Based on the variables in this study, the equation can be specifically written as: 

logit(𝑃) = 𝛽0 + 𝛽Age ⋅ Age + 𝛽PTV ⋅ PTV + 𝛽D2 ⋅ D2 + 𝛽D98 ⋅ D98 + 𝛽Dmean ⋅ Dmean + 𝛽V95

⋅ V95 + 𝛽HI ⋅ HI + 𝛽CI ⋅ CI + 𝛽NoFields ⋅ NoFields + 𝛽PrescribedDose ⋅ PrescribedDose

+ 𝛽ActualDeliveredDose ⋅ ActualDeliveredDose + 𝛽MaxDose ⋅ MaxDose

+ 𝛽AttachedToCourseYes ⋅ AttachedToCourseYes + 𝛽DiagnosisTypeSecondary

⋅ DiagnosisTypeSecondary + 𝛽RadiationTypeP ⋅ RadiationTypeP + 𝛽TreatmentTypeStatic

⋅ TreatmentTypeStatic + 𝛽CancerStage1 ⋅ CancerStage1 + 𝛽CancerStage2 ⋅ CancerStage2

+ 𝛽CancerStage3 ⋅ CancerStage3 + 𝛽CancerStage4 ⋅ CancerStage4 

 

2.5 Model Fitting and Evaluation 

The model was fitted using the generalised Linear Model (glm) function in R with a binomial 

family specification. The significance of each predictor was assessed using the Wald test, with a 

significance level set at 𝑝 < 0.05.  

 

3 Results  
Table 1: Characteristics of the two outcome groups undergoing radiotherapy 

Characteristic Non toxic, 

N = 1,246 

Toxic, 

N = 176 

p-value 

Attached to Course 450 (36%) 65 (37%) 0.8 

Diagnosis Type    

    Primary 1,241(100%) 175(99%) 0.5 

    Secondary 5 (0.4%) 1 (0.6%)  

Age 51 (12) 51 (12) 0.7 

Tumour Stage    

    0 138 (11%) 5 (2.8%) <0.001 

    1 188 (15%) 2 (1.1%)  

    2 451 (36%) 25 (14%)  

    3 289 (23%) 47 (27%)  
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Characteristic Non toxic, 

N = 1,246 

Toxic, 

N = 176 

p-value 

    4 180 (14%) 97 (55%)  

Nominal Energy    

    6000 1,150 (92%) 167 (95%) 0.2 

    12000 96 (7.7%) 9 (5.1%)  

Radiation Type    

    Electron 156 (13%) 21 (12%) 0.8 

    Photon 1,090 (87%) 155(88%)  

Treatment Type    

    Arc Therapy 418 (34%) 53 (30%) 0.4 

    Static 828 (66%) 123(70%)  

PTV 566 (123) 565 (129) 0.9 

D2 45.71 (1.22) 45.73(1.19) 0.8 

D98 39.03 (2.23) 38.86(2.20) 0.4 

Dmean 43.19 (1.04) 43.25(0.98) 0.4 

V95 538 (104) 520 (103) 0.036 

HI 0.15 (0.07) 0.16 (0.07) 0.5 

CI 1.22 (0.57) 1.20 (0.58) 0.5 

No of Fields 4.13 (3.10) 4.20 (3.00) 0.5 

Pre Described Dose 31 (18) 30 (18) 0.6 

Total Delivered Actual Dose 30 (18) 29 (18) 0.7 

Maximum Dose 41 (13) 42 (13) 0.2 

Number of Fracs 12 (8) 11 (8) 0.4 

 

Table 1 presents a comparative analysis of various characteristics between two groups of patients 

undergoing radiation therapy, categorized as “Non-toxic” (1,246 patients) and “Toxic” (176 

patients). The study found no significant differences between the two groups in terms of age, with 

both groups having a mean age of 51 years. Similarly, factors such as attachment to a course, 

diagnosis type, nominal energy used, radiation type, and treatment type showed no statistically 

significant variations between the non-toxic and toxic groups. However, a notable distinction 

emerged in the distribution of tumour stages between the two groups, with a p-value of less than 

0.001 indicating strong statistical significance. The toxic group had a higher proportion of patients 

with advanced-stage tumours, particularly stage 4, compared to the non-toxic group. Treatment-

related parameters such as Planning Target Volume (PTV), dose metrics (D2, D98, Dmean), 

Homogeneity Index (HI), and Conformity Index (CI) were largely similar between the two groups. 

However, there was a slight but statistically significant difference in V95 (volume receiving 95% 

of prescribed dose) between the groups, with a p-value of 0.036. Other treatment characteristics, 

including the number of fields, pre-described dose, total delivered actual dose, maximum dose, 

and number of fractions, did not show significant differences (p>0.05) between the toxic and non-

toxic groups. 
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Table 2: Multivariate logistic regression predicting risk of complication from radiotherapy 

Predictors Estimate p Odds Ratio 95% C.I 

Intercept -1.19 0.857 0.31 0.00 - 12.25 

Age -9.06e−4 0.901 1 0.99 - 1.01 

PTV -3.13e−4 0.656 1 1.00 - 1.00 

D2 -0.06 0.567 0.95 0.79 - 1.14 

D98 -0.04 0.573 0.96 0.83 - 1.11 

Dmean 0.09 0.291 1.09 0.93 - 1.29 

V95 0.00 0.026 1 1.00 - 1.00 

HI 1.62 0.56 5.06 0.02 - 1171.34 

CI -0.18 0.255 0.84 0.62 - 1.14 

No of Fields 0.02 0.571 1.02 0.94 - 1.11 

Prescribed dose 0.02 0.48 1.02 0.97 - 1.07 

Actual delivered dose -0.01 0.674 0.99 0.95 - 1.04 

Max Dose 0.00 0.956 1 0.94 - 1.06 

Attached to Course     

Yes – No -0.02 0.93 0.98 0.69 - 1.41 

Diagnosis Type    - 

Secondary – Primary 1.03 0.382 2.79 0.28 - 27.73 

Radiation Type    - 

Proton – Electron -0.34 0.798 0.71 0.05 - 9.65 

Treatment type    - 

Static – Arc Therapy -0.31 0.61 0.73 0.22 - 2.41 

Cancer staging    - 

1 – 0 -1.22 0.152 0.3 0.06 - 1.56 

2 – 0 0.46 0.364 1.58 0.59 - 4.24 

3 – 0 1.56 0.001 4.76 1.84 - 12.33 

4 – 0 2.78 < .001 16.17 6.33 - 41.30 

 

Table 2 shows the multivariate logistic regression predicting risk of complication from 

radiotherapy. It also shows that V95 (p = .026) and cancer stages 3 (OR = 4.76, 95% CI [1.84, 

12.33], p = .001) and 4 (OR = 16.17, 95% CI [6.33, 41.30], p < .001) compared to stage 0 were 

significantly associated with increased odds of complication following radiotherapy. No other 

predictors reached statistical significance for predicting complication risk. The results of the 

logistic regression analysis indicated that among the dosimetric parameters, only V95 was a 

significant predictor of radiotherapy outcomes (p=0.026). Higher V95 values were associated with 

better outcomes. Regarding clinical parameters, cancer staging was a significant predictor, with 

stage 3 (odds ratio=4.76, p=0.001) and stage 4 (odds ratio=16.17, p<0.001) being associated with 

poorer outcomes compared to stage 0. Other parameters included in the model, such as age, tumor 

grade, Dmax, and Dmean, did not significantly predict the radiotherapy outcome in this study. The 

study underscores the importance of V95 and cancer staging in predicting radiotherapy outcomes, 

which can inform future treatment planning and patient management strategies to achieve better 

outcomes. 
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4 Discussion 
The findings from this study provide insightful information into the predictors of radiotherapy 

outcomes in breast cancer patients, focusing on both clinical and dosimetric parameters. 

4.1 Tumour Stage 

One of the most significant findings of this study was the strong association between tumour stage 

and the occurrence of toxicity. Higher tumour stages (stage 3 and stage 4) were significantly 

associated with an increased risk of toxicity (p < 0.001). This is consistent with existing literature, 

which has repeatedly shown that advanced tumour stages are linked to poorer outcomes and higher 

complication rates due to the more aggressive nature of the disease and the increased intensity of 

required treatments (Edge and Compton, 2010; Matsen and Neumayer, 2013). 

 

4.2 V95 

The study also identified V95 (the volume of tissue receiving 95% of the prescribed dose) as a 

significant predictor of toxicity, with lower V95 values being associated with increased toxicity (p 

= 0.036). This finding again is in agreement with previous study indicating that adequate dose 

coverage (high V95 values) is crucial for effective tumour control and minimising complications 

(Bentzen, 2006). Ensuring a high V95 value can reduce the likelihood of residual tumour cells, 

thereby lowering the risk of recurrence and associated toxicities. 

 

4.3 Other Dosimetric Parameters 

Interestingly, other dosimetric parameters such as D2, D98, Dmean, HI, and CI did not show 

significant differences between the non-toxic and toxic groups. This might suggest that while these 

parameters are important for overall treatment planning, they may not be as critical in predicting 

acute toxicity as V95. Previous studies have suggested that while these parameters are important 

for understanding overall dose distribution and potential hotspots, their impact on toxicity can vary 

depending on individual patient anatomy and tumour characteristics (Emami et al., 1991; Marks 

et al., 2010). 

 

4.4 Age and Diagnosis Type 

Age and diagnosis type were not significantly associated with toxicity in this study. The mean age 

of patients in both groups was identical (51 years), and the p-value of 0.7 indicates no significant 

difference. This is somewhat surprising, as older age is often considered a risk factor for increased 

treatment-related complications (Sineshaw et al., 2014). The lack of significance between age and 

toxicity in this study could be due to the specific cohort characteristics or the comprehensive 

supportive care provided, which may mitigate age-related risks. 

 

4.5 Nominal Energy and Radiation Type 

The nominal energy levels used (6000 vs. 12000) and the type of radiation (electron vs. photon) 

did not show significant differences between the non-toxic and toxic groups (p = 0.2 and p = 0.8, 

respectively). This suggests that within the ranges and types of radiation used in this study, these 

factors did not play a major role in predicting toxicity. Previous study has shown that while higher 

energy levels and different types of radiation can impact treatment effectiveness and side effects, 

the specific context and patient selection criteria play a crucial role in these outcomes (Livi et al., 

2015). 
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4.6 Treatment Type 

The treatment type (arc therapy vs. static) also did not show a significant difference between the 

groups (p = 0.4). This is in agreement with some studies that suggest both methods can be equally 

effective and safe when appropriately planned and executed (Fiorino et al., 2012). 

5 Conclusion 
This study's findings provide valuable insights into the predictors of radiotherapy toxicity in breast 

cancer patients. The significant association of higher tumor stages and lower V95 values with 

increased toxicity underscores the need for precise treatment planning and dose coverage. These 

insights contribute to the ongoing efforts to optimize radiotherapy protocols and improve patient 

outcomes, ultimately supporting the broader goals of public health and sustainable development. 

 

5.1 Recommendations 

To improve radiotherapy outcomes for breast cancer patients and align with the United Nations 

Sustainable Development Goals (SDGs), the following recommendations are made: 

1. Optimise Dosimetric Planning:   - Utilise advanced radiotherapy techniques such as 

intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy (IGRT) to 

ensure accurate dose distribution and achieve higher V95 values, supporting SDG Three 

(SDG3) by enhancing treatment quality and effectiveness. 

2. Develop Stage-Specific Treatment Plans:   - Tailor radiotherapy protocols based on cancer 

stage, providing less aggressive treatment for early stages and more intensive treatment for 

advanced stages.  

3. Promote Multidisciplinary Care:- Establish collaborative teams of radiologists, medical 

physicists, oncologists, dosimetrists, and other healthcare professionals to develop and 

review treatment plans collectively. This comprehensive approach supports SDG 3 by 

ensuring coordinated, holistic care for better patient outcomes. 
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