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Abstract 

Capture-recapture methods are essential for estimating hidden populations in fields such 

as public health and the social sciences. Traditional estimators based on the Poisson 

distribution often underestimate population sizes when the data exhibit overdispersion. 

To address this limitation, this study introduced the Zelterman-type and Mantel-

Haenszel-type estimators within the zero-truncated discrete Lindley distribution. The 

conditional technique was utilized for variance estimation. The performance of the 

proposed estimators was assessed through simulation studies using one-inflated Poisson 

data across varying population sizes and inflation levels. The results showed that the 

proposed estimators outperformed traditional Poisson and geometric-based methods, 

yielding lower relative bias (RBias) and relative root mean square error (RRMSE). Real-

life applications further validated these findings, where the Zelterman-type estimator 

produced near-exact results for golf tees data, (𝑁̂𝑍𝑇=250.42, SE=22.90) compared to 

estimators from Poisson and geometric. The Mantel-Haenszel-type estimator proved 

effective in estimating undetected cases, particularly where traditional models were 

ineffective. Further findings show that the Zelterman-type estimator performs best on data 

that are highly right-skewed, slightly platykurtic, or leptokurtic, while the Mantel-

Haenszel-type estimator performs better on moderately right-skewed data. In conclusion, 

the proposed estimator can serve as an alternative estimator in situations where the 

traditional estimators have failed. 

 

Keywords: Zelterman-type, Mantel-Haenszel-type estimator, One-inflated Poisson 
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1. INTRODUCTION 

Population size estimation under the capture-recapture method has been used to 

model hidden data. For instance, capture-recapture has been employed to estimate 

the number of heroin users in Northern Thailand (Pijitrattana, 2018), assess the 

population size of female sex workers in Vietnam (Nguyen et al., 2021), assess the 

population of European pond turtles in the wetlands of the Venice Lagoon (Liuzzo 

et al., 2021), and determine the number of farms affected by foot-and-mouth 

disease outbreaks in Southeast Asia (Sansamur et al., 2021), as well as to evaluate 

the completeness of COVID-19 contact tracing during the first wave of the 

pandemic in Thailand (Lerdsuwansri et al., 2022; Böhning et al., 2023). 

Zero-truncated count distribution modeling has been a longstanding method for 

estimating population size using CR data. This approach uses aggregate data on 

the number of sample units captured exactly once (𝑓1), twice (𝑓2), three times (𝑓3) 

till the last term (𝑓𝑡), across multiple capture occasions. The observed population 

(𝑛) consists of sample units captured at least once, while (𝑓0) represents the 

number of uncaptured sample units. The summation of the observed and 

unobserved units gives the total target population size as  𝑁 = 𝑛 + 𝑓0.  According 

to Piatek and Bohning (2024), the zero-truncated Poisson distribution is often used 

as a starting point for modeling the frequencies of positive count data. However, 

the zero-truncated Poisson assumes that the mean and variance are equal, which 

is frequently not the case due to unequal capture probabilities among sample units 

(heterogeneity), leading to overdispersion or underdispersion. The geometric 

distribution is mostly applied in modeling overdispersed capture-recapture data, 

leading to the development of various estimators. Anan et al. (2019) introduced a 

new Turing-type estimator for unknown population size in a CRC technique in 

which the count of identifications follows a geometric distribution. This is said to 

be a Poisson count adjusted for exponentially distributed heterogeneity. This 

estimator is suitable in CRC situations where the geometric distribution is better 

compared to the Poisson distribution. 

Böhning et al. (2016) examined the ratios of neighbouring count probabilities. 

These ratios were estimated using observed frequencies, regardless of whether the 

distribution was zero-truncated or untruncated. The researchers explored a 

broader range of regression models, specifically those based on fractional 

polynomials, and showed that this approach yields a valid count distribution. 

They applied the proposed methodology to analyze different empirical 

applications and also conducted a simulation study to validate their findings. 

In this paper, we are interested in exploring the discrete Lindley distribution in 

the capture-recapture technique by utilizing the Horvitz-Thompson (HT) method. 

The subsections in materials and methods section includes; the proposed 
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Zelterman-type estimator, the proposed Mantel-Haenszel-type estimator, 

variance estimation, while the subsection for the result and discussion includes; 

the performance of the proposed estimators through simulations and real data 

applications for population size estimation and finally the summary and 

conclusion. 

2. MATERIALS AND METHOD 

Horvitz-Thompson estimator (as cited in Kaskasamkul, 2018) introduced a 

fundamental technique for estimating a finite population using various sampling 

designs, with or without replacement. The equation of the Horvitz-Thompson 

estimator is given as: 

𝑁̂ =
𝑛

1−𝑝0
                  (1) 

Where n = observed individuals.  

𝑝0= probability of unobserved individuals. 

Abebe and Shanker (2018) introduced the discrete Lindley distribution and 

applied it in modeling frequency data in biological, ecological, health and 

epidemiological studies. The probability mass function of the discrete Lindley 

distribution is defined by; 

𝑝𝑦(𝑦; 𝜃) =
(𝑒𝜃−1)

2
(1+𝑦)𝑒−𝜃𝑦

𝑒2𝜃
                (2) 

for 𝑦 = 0,1,2 … , ; 𝜃 > 0 

Rama and Simon (2018) proposed the zero-truncated discrete Lindley (ZTDL) 

distribution, which is given by;  

𝑃𝑦
+ =

(𝑒𝜃−1)
2

(1+𝑦)𝑒−𝜃𝑦

2𝑒𝜃−1
 ,  𝑦 = 1,2, …                  (3) 

The expression of the zero-truncated distribution is given as;  

 𝑃𝑦
+ =

𝑃𝑦

1−𝑝0
, 𝑦 = 1,2, …                  (4) 

The unknown probability 𝑝0, obtained from equation (2), is given as;  

𝑝0 =
(𝑒𝜃−1)

2

𝑒2𝜃
                  (5) 

Substituting 𝑝0 into the Horvitz-Thompson estimator in equation (1) gives the 

capture-recapture model based on the zero-truncated discrete Lindley 

distribution as:  

𝑁̂𝑍 =
𝑛

1−{
(𝑒𝜃−1)

2

𝑒2𝜃 }

                  (6) 
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2.1 Proposed Zelterman-type Population Size Estimator based on Zero-

truncated discrete Lindley distribution.  

The Zelterman population estimator utilises the ratio of the neighbouring 

probabilities  𝑃𝑦
+(𝑦; 𝜃) and 𝑃𝑦

+(𝑦 + 1; 𝜃) of the truncated count to estimate the 

parameter 𝜃. The ratio of the neighbouring probabilities of equation (2) is given 

as; 

  𝜃 =
𝑃𝑦

+(𝑦+1;𝜃)

𝑃𝑦
+(𝑦;𝜃)

                  (7)

  

𝑃𝑦
+(𝑦+1;𝜃)

𝑃𝑦
+(𝑦;𝜃)

=
(2+𝑦)𝑒−𝜃𝑦𝑒−𝜃

(1+𝑦)𝑒−𝜃𝑦
                  (8)

  

Substituting the probabilities with their relative frequencies into (8), we have  
𝑓𝑦+1

𝑁
𝑓𝑦

𝑁

=
(2+𝑦)

𝑒𝜃(1+𝑦)
  which can be expressed in terms of 𝑒𝜃 as follows;  

𝑒𝜃  =
(2+𝑦)𝑓𝑦

(1+𝑦)𝑓𝑦+1
                  (9) 

Thus,  

  𝜃 = 𝑙𝑛 (
(2+𝑦)𝑓𝑦

(1+𝑦)𝑓𝑦+1
)                (10) 

Kuhnert and Böhning (2009) endorsed using 𝑦 = 1 because it provides the closest 

frequencies to estimate 𝑓0 and most counts fall into  𝑓1 and 𝑓2 in most applications. 

Zelterman (as cited in Kaskasamkul, 2018) asserted that individuals who are never 

seen should be more similar to those who are rarely seen, suggesting that 𝑦 = 1. 

Letting 𝑦 = 1, the parameter of Zelterman-type estimator (Zelterman-DLD) in 

equation (10) becomes: 

  𝜃 = 𝑙𝑛 (
3𝑓1

2𝑓2
)                (11) 

substitute θ̂ into the population size estimator based on zero-truncated Discrete 

Lindley distribution in equation (6) to obtain the Zelterman-type estimator; 

𝑁̂𝑍𝑇 =
𝑛(

3𝑓1
2𝑓2

)
2

2(
3𝑓1
2𝑓2

)−1
          

𝑁̂𝑍𝑇 =
𝑛(3𝑓1)2

2𝑓2(6𝑓1−2𝑓2)
               (12) 
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2.2 Proposed Mantel-Haenszel-type Population Size Estimator based on Zero-

truncated discrete Lindley distribution.  

The main idea in this method is that weight is added to the Zelterman-type 

estimator based on the zero-truncated discrete Lindley distribution. Thus, the 

parameter of the Zelterman-type estimator in equation (9) is utilized: 

𝑒𝜃 = (
(2+𝑦)𝑓𝑦

(1+𝑦)𝑓𝑦+1
)  

Let the weight be (1 + 𝑦)𝑊𝑦+1. By adding weight to the parameter of the 

Zelterman estimator based on the zero-truncated discrete Lindley distribution, it 

becomes;  

𝑒𝜃̂𝑀𝑇 =
∑ (1+𝑦)𝑊𝑦+1(

(2+𝑦)𝑓𝑦

(1+𝑦)𝑓𝑦+1
)𝑘

𝑦=1

∑ (1+𝑦)𝑊𝑦+1
𝑘
𝑦=1

         

Assuming that 𝑊𝑦+1 = 𝑓𝑦+1,  indicating that the weights represent frequency for 

each class 𝑦. 

𝑒𝜃̂𝑀𝑇 =
∑ (1+𝑦)𝑓𝑦+1(

(2+𝑦)𝑓𝑦

(1+𝑦)𝑓𝑦+1
)𝑘

𝑦=1

∑ (1+𝑦)𝑓𝑦+1
𝑘
𝑦=1

              (13) 

Thus, equation (13) becomes; 

𝜃𝑀𝑇 = ln (
∑ (2+𝑦)𝑓𝑦

𝑘
𝑦=1

∑ (1+𝑦)𝑓𝑦+1
𝑘
𝑦=1

)               (14) 

Thus, the parameter of the Mantel-Haenszel estimator based on ZTDLD is: 

𝜃𝑀𝑇 = ln (
3𝑓1+4𝑓2+5𝑓3+6𝑓4+7𝑓5+8𝑓6+⋯+(2+𝑘)𝑓𝑘

2𝑓2+3𝑓3+4𝑓4+5𝑓5+6𝑓6+⋯+(1+𝑘)𝑓(1+𝑘)
)              (15) 

𝜃𝑀𝑇 = ln (
𝑆

𝑚
)                  (16) 

Where 𝑆 = 3𝑓1 + 4𝑓2 + 5𝑓3 + 6𝑓4 + 7𝑓5 + 8𝑓6 + ⋯ + (2 + 𝑘)𝑓𝑘 = ∑ (2 + 𝑦)𝑓𝑦
𝑘
𝑦=1  

Where 𝑚 = 2𝑓2 + 3𝑓3 + 4𝑓4 + 5𝑓5 + 6𝑓6 + ⋯ + (1 + 𝑘)𝑓(1+𝑘) = ∑ (1 + 𝑦)𝑓𝑦+1
𝑘−1
𝑦=1  

One of the good attributes of the Mantel-Haenszel-type estimator is that it involves 

a lot of information about the frequency counts.  Thus, substituting 𝜃𝑀𝑇 as 𝜃 into 

equation (5), it becomes: 

𝑝̂0 = (
𝑆−𝑚

𝑆
)

2

                 (17) 

Hence, substituting 𝑝̂0 into equation (6) to obtain the Mantel-Haenszel-type 

population size estimator given as:         

𝑁̂𝑀𝑇 =
𝑛

1−(
𝑆−𝑚

𝑆
)

2                (18) 
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2.3 Variance Estimation 

The conditional technique by Bohning (2008) was utilized for deriving the variance 

of 𝑁̂𝑍𝑇. This variance comprises of two sources of variation arising from the 

random sample, and the other as a result of the predictive value, 𝑝̂0 based on the 

observed individuals 𝑛 (full details is in Appendix A.1). The variance of 𝑁̂𝑀𝑇 was 

derived based on one source of variation as utilized by Anan et al. (2019), where 𝑛 

is assumed to be fixed (full details is in Appendix A.2). The estimated variances of 

the Zelterman-type estimator and the Mantel-Haenszel-type estimator are given 

as; 

𝑉𝑎𝑟(𝑁̂𝑍𝑇) =
𝑛(3𝑓1)2(3𝑓1−2𝑓2)2

(12𝑓1𝑓2−4𝑓2
2)

2 + 𝑛2 (
324𝑓1

3

16[3𝑓1−𝑓2]4
−

648𝑓1
4

16𝑓2[3𝑓1−𝑓2]4
−

243𝑓1
5

16𝑓2
2[3𝑓1−𝑓2]4

+

729𝑓1
6

16𝑓2
3[3𝑓1−𝑓2]4

)                  (19) 

𝑉𝑎𝑟(𝑁̂𝑀𝑇) =
𝑛𝑆2(𝑆−𝑚)2

(2𝑚𝑆−𝑚2)2
               (20) 

The 95% confidence interval of the Zelterman-type and the Mantel-Haenszel-type 

Population size estimator are constructed using the normal approximation 

approach based on the population size estimator and the estimated variance given 

as; 

𝑁̂𝑍𝑇 ± 𝑍0.975√𝑉𝑎𝑟(𝑁̂𝑍𝑇)               (21) 

𝑁̂𝑀𝑇 ± 𝑍0.975√𝑉𝑎𝑟(𝑁̂𝑀𝑇)               (22) 

2.4 Simulation Study  

Monte Carlo simulation was carried out in the R environment to investigate the 

performance of the proposed estimators and compared with some existing 

estimators. The data was generated for 𝑁= 60, 100, 1000, and 5000 population sizes 

repeated 1000 times. The mean of the Poisson distribution was considered at (λ =

1.0, 1.05, 1.10), and 10% one-inflation. The performance of each of the estimators 

was measured in terms of relative bias (RBias) and relative root mean square error 

(RRMSE) given as: 

𝑅𝐵𝑖𝑎𝑠(𝑁̂) =
1

𝑁
[𝐸(𝑁̂) − 𝑁]  and  𝑅𝑅𝑀𝑆𝐸(𝑁̂) =

1

𝑁
√𝑣𝑎𝑟(𝑁̂) + {𝑏𝑖𝑎𝑠(𝑁̂)}

2
 

The proposed Zelterman-type estimator is compared with the Zelterman 

estimator introduced by Zelterman (as cited in Anan, 2016) under the Poisson 

distribution, and the extension of the Zelterman estimator under the geometric 

distribution by Anan (2016): 

𝑁̂𝑍𝑃 =
𝑛

1−𝑒𝑥𝑝(−
2𝑓2
𝑓1

)
                (22) 
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𝑉𝑎𝑟̂(𝑁̂𝑍𝑃) = 𝑛𝐺(𝜆̂) [1 + 𝑛𝐺(𝜆̂)𝜆̂2 (
1

𝑓1
+

1

𝑓2
)]            (23) 

where 𝐺(𝜆̂) =
𝑒𝑥𝑝(−𝜆̂)

(1−𝑒𝑥𝑝(−𝜆))
2  and 𝜆̂ =

2𝑓2

𝑓1
   

𝑁̂𝑍𝐺 =
𝑛𝑓1

𝑓2
                 (24) 

𝑉𝑎𝑟̂(𝑁̂𝑍𝐺) =
𝑛𝑓1(𝑓1−𝑓2)

𝑓2
2 + 𝑛2 (

𝑓1

𝑓2
2 +

𝑓1
2

𝑓2
3)                 (25) 

The proposed Mantel-Haenszel-type estimator is compared with the Mantel-

Haenszel estimator developed by Wannasirikul (as cited in Anan, 2016) under the 

Poisson distribution is given as: 

𝑁̂𝑀𝐻 =
𝑛

1−{𝑒𝑥𝑝(−
𝑆−𝑓1

𝑛−𝑓𝑚
)}

               (26) 

Where 𝑆 = ∑ 𝑥𝑓𝑥
𝑚
𝑥=1  and 𝑛 = 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑚. 

 

3. RESULT AND DISCUSSION 

3.1 Results of the Simulation Study on the Estimated Population Size on One-

inflated  

Table 1 presents a comparison of RBias and RRMSE for the Zelterman-type, 

Zelterman-Poisson and Zelterman-Geometric estimators using 10% one-inflated 

Poisson count data, simulated 1000 times.  

Table 1: Comparing Population size estimates for Zelterman-type, Zelterman-Poisson, 

and Zelterman-Geometric for one-inflated Poisson distribution at 10% one-inflation, 

simulated 1000 times. 

Lambda 

Zelterman-type Zelterman-Poisson Zelterman-Geometric  

 𝑁̂𝑍𝑇 RBias RRMSE  𝑁̂𝑍𝑃 RBias RRMSE  𝑁̂𝑍𝐺  RBias RRMSE 

𝑁 = 60, 𝑛 = 25 

1.00 
60.133 0.0022 0.4157 49.491 

-

0.1752 0.4886 70.261 0.1710 0.8207 

1.05 
60.501 0.0084 0.4557 49.696 

-

0.1717 0.5053 70.576 0.1763 0.8522 

1.10 
56.803 

-

0.0533 0.4068 47.325 

-

0.2113 0.4805 65.684 0.0947 0.7732 

𝑁 = 100, 𝑛 = 50 

1.00 111.198 0.1120 0.3030 
92.925 

-

0.0708 0.3196 128.675 0.2868 0.6297 

1.05 107.434 0.0743 0.2968 
90.495 

-

0.0951 0.3202 123.493 0.2349 0.5991 
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1.10 103.362 0.0336 0.2696 
87.838 

-

0.1216 0.3071 117.953 0.1795 0.5515 

𝑁 = 1000, 𝑛 = 500 

1.00 
1046.22 0.0462 0.0918 885.17 

-

0.1148 0.1388 1201.06 0.2011 0.2494 

1.05 
1008.33 0.0083 0.0848 860.72 

-

0.1393 0.1570 1149.05 0.1491 0.2107 

1.10 
976.20 

-

0.0238 0.0863 840.03 

-

0.1600 0.1739 1104.83 0.1048 0.1835 

𝑁 = 5000, 𝑛 = 2500 

1.00 
5209.55 0.0419 0.0525 4411.30 

-

0.1177 0.1215 5977.33 0.1955 0.2046 

1.05 
5011.40 0.0023 0.0366 4283.42 

-

0.1433 0.1460 5705.59 0.1411 0.1530 

1.10 
4846.56 

-

0.0307 0.0450 4177.33 

-

0.1645 0.1667 5478.80 0.0958 0.1130 

 

The performance of the three estimators, 𝑁̂𝑍𝑇, 𝑁̂𝑍𝑃, and 𝑁̂𝑍𝐺 , were evaluated based 

on 10% one-inflated Poisson count data. The result shows that (𝑁̂𝑍𝑇) produced 

estimates that were close to the true population size with relatively small Rbias 

and RRMSE as compared to 𝑁̂𝑍𝑃, and 𝑁̂𝑍𝐺 . For 𝑁 = 60, the best estimate was 𝑁̂𝑍𝑇 =

60.133, 𝑅𝐵𝑖𝑎𝑠 = 0.0022 and 𝑅𝑅𝑀𝑆𝐸 = 0.4157, particularly at  λ = 1.00. For 𝑁 =

100, the best estimate was 𝑁̂𝑍𝑇 = 103.362, 𝑅𝐵𝑖𝑎𝑠 = 0.0336 and 𝑅𝑅𝑀𝑆𝐸 = 0.2696, 

particularly at λ = 1.10. For a large population size 𝑁 = 1000, the Zelterman-type 

estimator had the most accurate estimates, particularly at λ = 1.05, where  𝑁̂𝑍𝑇 =

1008.33 with 𝑅𝐵𝑖𝑎𝑠 = 0.0083  and 𝑅𝑅𝑀𝑆𝐸 = 0.0848. The Zelterman-type 

estimator continues to demonstrate better performance by having estimates, 𝑁̂𝑍𝑇 =

5011.40, 𝑅𝐵𝑖𝑎𝑠 = 0.0023  and 𝑅𝑅𝑀𝑆𝐸 = 0.0366 at λ = 1.05 . The estimates of 𝑁̂𝑍𝑃, 

highly underestimate the true population size while 𝑁̂𝑍𝐺  consistently overestimate 

the true population size.  Thus, 𝑁̂𝑍𝑇 is the most suitable estimator since it provides 

the smallest Rbias and RRMSE.  
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Table 2:  Simulation results of 95% confidence interval of Zelterman estimators 

 Zelterman-type Zelterman-Poisson Zelterman-Geometric 

Lambda 𝑁̂𝑍𝑇 95% CI 𝑁̂𝑍𝑃 95% CI 𝑁̂𝑍𝐺 95% CI 

𝑁 = 60, 𝑛 = 25 

1.00 60.133 39-81 49.491 12-87 70.261 -6-146 

1.05 60.501 36-85 49.696 12-88 70.576 -7-148 

1.10 56.803 36-77 47.325 13-82 65.684 -5-136 

𝑁 = 100, 𝑛 = 50 

1.00 111.198 85-138 92.925 48-138 128.675 37-220 

1.05 107.434 82-133 90.495 48-133 123.493 36-211 

1.10 103.362 78-128 87.838 47-128 117.953 35-201 

𝑁 = 1000, 𝑛 = 500 

1.00 1046.22 969-1122 885.17 758-1012 1201.06 942-1460 

1.05 1008.33 934-1082 860.72 740-981 1149.05 902-1396 

1.10 976.20 904-1048 840.03 725-955 1104.83 868-1341 

𝑁 = 5000, 𝑛 = 500 

1.00 5209.55 5036-5375 4411.3 4129-4693 5977.33 5402-6552 

1.05 5011.40 4848-5175 4283.42 4017-4550 5705.59 5160-6252 

1.10 4846.56 4688-5006 4177.33 3923-4432 5478.80 4956-6001 

 

Table 2 presents the 95% CI of the Zelterman estimators for different population 

sizes. The 95% CI of 𝑁̂𝑍𝑇 is the narrowest across all the population sizes, suggesting 

higher precision compared to 𝑁̂𝑍𝑃 and 𝑁̂𝑍𝐺 .   

In Table 3, the result shows comparison between the Mantel-Haenszel-type 

estimator and the Mantel-Haenszel Poisson estimator using one-inflated Poisson 

count data at 10% one-inflated.  

Table 3: Comparing Population size estimates for Mantel-Haenszel-type and Mantel-

Haenszel-Poisson for one-inflated Poisson distribution at 10% one-inflation, simulated 

1000 times. 

 Mantel-type Mantel-Poisson 

Lambda 𝑁̂𝑀𝑇 RBias RRMSE 95% CI 𝑁̂𝑀𝑃 Rbias 

𝑁 = 60, 𝑛 = 25 

1.00 60.189 0.0032 0.2543 42-78 44.705 -0.2549 

1.05 57.645 -0.0393 0.2393 41-75 43.020 -0.2830 

1.10 55.497 -0.0751 0.2318 39-72 41.588 -0.3069 
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𝑁 = 100, 𝑛 = 50 

1.00 115.663 0.1566 0.2266 92-140 85.754 -0.1425 

1.05 111.189 0.1119 0.1983 88-134 82.689 -0.1731 

1.10 107.682 0.0768 0.1734 86-129 80.514 -0.1949 

𝑁 = 1000, 𝑛 = 500 

1.00 1128.06 0.1281 0.1341 1054-1202 764.260 -0.2357 

1.05 1087.01 0.0870 0.0959 1017-1156 730.096 -0.2699 

1.10 1054.74 0.0547 0.0698 988-1122 705.491 -0.2945 

𝑁 = 5000, 𝑛 = 2500 

1.00 5615.61 0.1231 0.1243 5452-5780 2951.84 -0.4096 

1.05 5423.90 0.0848 0.0863 5268-5580 2825.27 -0.4349 

1.10 5255.52 0.0511 0.0537 5106-5405 2699.77 -0.4600 

 

For a very small size population, say (𝑁 = 60), the Mantel-Haenszel estimator 

under the zero-truncated discrete Lindley distribution (Mantel-Haenszel-type) 

produced an estimate of 𝑁̂𝑀𝑇 = 60.189 with an RBias of 0.0032 at λ = 1.00. For a 

small population size (𝑁 = 100), the Mantel-Haenszel-type estimator yields, 

𝑁̂𝑀𝑇 = 107.682 and RBias = 0.0768 at λ = 1.10. Also, considering a large population 

𝑁 = 1000, the Mantel-Haenszel estimator under the zero-truncated distribution 

(Mantel-Haenszel-type estimator) had the best estimates, particularly at λ = 1.10, 

the population size estimate, 𝑁̂𝑀𝑇 = 1054.74 with 𝑅𝐵𝑖𝑎𝑠 = 0.0547 performs better. 

For a very large population size 𝑁 = 5000, the Mantel-Haenszel-type estimator 

continued to demonstrate better performance by having estimates with the least 

RBias as compared to Mantel-Poisson. The Mantel-Haenszel-type estimator 

produced estimates,  𝑁̂𝑀𝑇 = 5255.52, 𝑅𝐵𝑖𝑎𝑠 = 0.0537 at λ = 1.10 performs better. 

This result shows that the Mantel-Haenszel-type estimator consistently performs 

better than the Mantel-Haenszel estimator under the Poisson distribution and can 

serve as an alternative estimator. 

3.2 Applications  to Real-life Datasets 

This section provides three well-known datasets in the field of capture-recapture. 

Also, one new dataset on recidivism of offenders in Nigerian correctional Centre 

is introduced to enhance the applicability of the proposed estimators and for 

comparison with existing estimators.  

Data on Golf tees (Borchers et al. 2002) 

In an experiment, 250 groups of golf tees were placed in a study area. Some were 

left visible above the grass, while others were hidden. 162 groups of golf tees were 
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found, while the remaining were missed, and their total number needs to be 

estimated. Table 4 presents the frequency of the Golf tees data. 

Table 4: The frequency of Golf tees 

𝑦 0 1 2 3 4 5 6 7 8 

𝑓𝑦 88 46 28 21 13 23 14 6 11 

 

To enhance comparison with previous studies, this research is considered 

alongside other notable estimators. Niwitpong et al. (2003) introduced the Chao 

estimator under the geometric distribution, which produced an estimated number 

of golf tees at 230, with the 95% CI ranging from 207 to 253. Rocchetti et al. (2014) 

applied a regression estimator under the beta-binomial distribution, yielding a 

lower estimate of 216 golf tees. This estimate was accompanied by a 95% CI of 193–

238 under the asymptotic approximation, and 188–247 under a nonparametric 

approach. 

Table 5: Results for Golf tees data with standard errors and confidence interval (n=162, 

N=250)  

Estimator 𝑓0 𝑁̂ Bias 𝑆𝐸̂(𝑁̂) 95% CI C.I length 

Zelterman-Poisson  68.11 230.11 -19.89 29.14 172-289 117 

Zelterman-

Geometric 

104.14 266.14 16.14 65.12 139-394 255 

Zelterman-type 88.42 250.42 0.42 22.90 207-294 87 

 

Anan (2016) applied the Zelterman estimator under the zero-truncated Poisson 

distribution for population size on the popular Golf tees data. The number of golf 

tees was estimated to be 231 with a 95% CI of 171–289 and a standard error of 29.9. 

Also, Anan et al. (2017) proposed the linear regression estimation based on the 

Conway-Maxwell-Poisson distribution (LCMP), this method reported the 

population of golf tees data as 223 with a standard error of 33.09 and a 95% C.I 

(159-288). Revisiting the performance of the Zelterman estimator under the 

Poisson distribution (Zelterman-Poisson), the result agrees with the findings of 

Anan (2016). The Zelterman estimator under the geometric distribution 

(Zelterman-Geometric) produced a total population estimate of 266.14, which 

overestimates the true population size of 250. The Standard error indicates less 

precision of the estimate, while the 95% CI (139–394) has a wide C.I length, 

suggesting that the estimate is unstable. The proposed Zelterman estimator under 

the discrete Lindley distribution (Zelterman-type) estimated a total population of 

250.42, which is very close to the known true population. The Standard error 
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(22.90) is the least among the competing estimators, with the 95% CI (207-294), 

which has the shortest C.I length. The results indicate that the Zelterman-type 

estimator provides the best option for estimating the population size of the golf 

tees.  

Data on Illegal immigrants in the Netherlands (Van der Heijden et al. (2003) 

Another area of interest is the data on illegal immigrants recorded in the 

Netherlands. The record shows that a total of 1880 individuals were not effectively 

expelled, but some were caught more than once. The number of times they were 

apprehended was recorded as (𝑓1, … , 𝑓6) = (1645,183,37,13,1,1). To enhance this 

research, results from previous studies that have estimated the population size of 

illegal immigrants in the Netherlands were reviewed. Previous studies have 

estimated the population size of illegal immigrants not effectively expelled from 

the Netherlands using different statistical methods. Van der Heijden et al. (2003) 

applied various zero-truncated Poisson regression models on illegal immigrants 

not effectively expelled from the Netherlands. Their objective was to assess the 

extent of unobserved immigrant populations who were not effectively expelled. 

Among the models evaluated, the null model produced the lowest estimate of the 

total population size, yielding 𝑁̂=7080 with a 95% C.I (6363–7797). In contrast, the 

full model, which incorporated additional covariates, yielded the highest estimate 

𝑁̂=12691 with a much wider C.I (7185–18198). However, model diagnostics based 

on Pearson residuals indicated a lack of fit, suggesting the presence of unobserved 

heterogeneity not adequately captured by the fitted models. The authors 

suggested that even the highest estimate of 𝑁̂=12691 is likely an underestimate of 

the true number of illegal immigrants residing in the Netherlands. Similarly, 

Wongprachan (2020) used the Zero-Truncated Poisson-Lindley (ZTPL) model, 

estimating the population size at 13334 with a 95% CI of 12073–14595 and a 

standard error of 643.15. Table 6 shows the estimates of illegal immigrant who 

were not effectively expelled from the Netherlands using the Zelterman 

estimators. 

Table 6: Results for illegal immigrants with standard errors and confidence intervals  

Estimator 𝑓0 𝑁̂ 𝑆𝐸̂(𝑁̂) 95% CI C.I length 

Zelterman-Poisson 7544.56 9424.56 683.97 8084-10765 2681 

Zelterman-Geometric 15,019.45 16899.45 1367.20 14220-19579 5359 

Zelterman-type 11,282.69 13162.69 282.17 12610-13716 1106 

 

Using the Zelterman-Poisson estimator, the number of unobserved illegal 

immigrants not effectively expelled was 7544.56, leading to a total of 9424.56 (8084-

10765) and a standard error (683.97). The Zelterman-Geometric estimated the 
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number of unobserved illegal immigrants not effectively expelled as 15019.45, 

leading to a total population of illegal immigrants not effectively expelled as 

16899.45 (14220-19579) with a standard error (1367.20). On the other hand, the 

Zelterman-type produced a moderate estimate for the number of unobserved 

illegal immigrant as 11282.69, resulting in a total population estimate of 13162.69. 

This method had the lowest standard error (282.17), indicating a more precise 

estimate. Additionally, the 95% C.I (12610–13716) has the shortest C.I length, 

suggesting that this estimator provides a more stable and reliable population 

estimate. Thus, the Zelterman-type estimate aligns more closely with the results 

obtained by Wongprachan (2020). Given the stability and improved precision of 

the Zelterman-type estimator, it appears to be the most reliable approach for 

estimating the hidden population of the illegal immigrants not effectively expelled 

from the Netherlands. 

Data on recidivism of offenders in the Nigerian correctional centre (Oyewo, 

2023) 

The Nigerian Correctional Service has a history of having a high recidivism rate, 

this is seen in a study conducted by Oyewo (2023), that out of the 11930 prisoners 

found guilty in Nigerian jails, 6447 were convicted once, 2951 were convicted 

twice, 1469 were convicted three times, 536 were convicted four times, 295 were 

convicted five times, 232 were convicted six times or more. Table 8 shows the 

estimates of recidivism of offenders in the Nigerian correctional centres. The aim 

in this example is to estimate the number of offenders who missed rearrest, either 

due to limited resources, inadequate infrastructure, or not seen. 

Table 8: Estimates of Recidivism in Nigerian Jails with standard errors and confidence 

intervals for Zelterman Estimators 

Estimator 𝑓0 𝑁̂ 𝑆𝐸̂(𝑁̂) 95% CI C.I length  

Zelterman-Poisson 7964.30 19894.30 293.78 19318-20470 1152 

Zelterman-Geometric 14133.27 26063.27 605.34 24877-27250 2373 

Zelterman-type 11136.95 23066.95 179.54 22715-23419 704 

 

In this study, the Zelterman-Poisson estimated the number of offenders who 

missed rearrest, either due to limited resources, inadequate infrastructure, or not 

being seen completely as (𝑓0 = 7964.30), leading to a total population of 

recidivism among offenders as (𝑁̂𝑍𝑃 = 19894.30, 𝑆𝐸 = 293.78  ) and the 95% CI 

ranged from 19318 to 20470. Zelterman-Geometric estimated the number of 

offenders who missed rearrest, either due to limited resources, inadequate 

infrastructure, or not being seen completely as (𝑓0 = 14133.27) leading to a total 

population size of recidivism as (𝑁̂𝑍𝐺 = 26063.27,   𝑆𝐸 = 605.34),  and the 95% CI 
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ranged from 24877 to 27250. On the other hand, the Zelterman-type produced a 

moderate estimate for the number of offenders who missed rearrest, either due to 

limited resources, inadequate infrastructure, or not being seen completely as 

(𝑓0 = 11136.95), resulting in a total population estimate of (𝑁̂𝑍𝑇 = 23066.95, 𝑆𝐸 =

179.54) . This method had the lowest standard error, indicating a more precise 

estimate. Additionally, the 95% (22715–23419) has the shortest C.I length, 

suggesting that this estimator provides a more stable and reliable population size 

estimate. Thus, the Zelterman-type estimator demonstrates a superior 

performance over both the Zelterman-Poisson and Zelterman-Geometric 

estimators in terms of precision, as reflected by its lower standard error and the 

short C.I length. This suggests that the Zelterman-type estimator is the most 

reliable method for estimating the number of recidivisms among offenders 

Data on Bowel Cancer Patients (Lloyd and Frommer, 2004) 

Lloyd and Frommer (2004) conducted a study at St. Vincent’s Hospital, Sydney, 

involving 122 patients with confirmed bowel cancer status. Each patient 

underwent a sequence of binary diagnostic tests over six successive days, with the 

presence of blood in faeces recorded on each occasion. Patients who received 

negative results on all six tests were not further examined, leaving their true 

disease status unknown. Conversely, individuals with at least one positive result 

were confirmed to have the disease. The frequency distribution of the test result 

counts was reported as follows: The frequency was reported as (𝑓0, … , 𝑓6) =

(22,8,12,16,21,12,31). Table 9 presents the results of the population size estimates 

of the Bowel cancer patients. 

Table 9: Results for Bowel Cancer with standard errors and confidence intervals  

Estimator 𝑓0 𝑁̂ Bias 𝑆𝐸̂(𝑁̂) 95% CI C.I length  

Zelterman-Poisson 5.24 105.24 -16.76 7.91 90-121 31 

Zelterman-

Geometric 

- 66.67 -55.33 30.06 8-126 118 

Zelterman-type - 100 -22.00 70.71 -39-239 278 

Mantel-Haenszel-

type 

13.16 113.16 -8.84 3.86 106-121 15 

Mantel-Poisson - 100 -22.00 - -  

 

The Zelterman estimator based on the Poisson distribution estimated the total 

number of bowel cancer patients as 105.24 (90-121), out of which 5.24 represented 

the number of patients who received negative results on all six tests. The 

Zelterman estimators under the geometric, zero-discrete Lindley, and Mantel-

Haenszel estimators under the Poisson distribution couldn’t estimate the number 
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of patients who received negative results on all six tests. The Mantel-Haenszel 

estimator under the zero-truncated discrete Lindley distribution (Mantel-

Haenszel-type) estimated the number of patients who received negative results on 

all six tests, 𝑓0 = 13.16, resulting in a total population of 113 bowel cancer patients. 

The proposed Mantel-Haenszel-type estimator produced a more reliable estimate, 

which is close to the true population of the bowel cancer patients. Table 10 provide 

a descriptive analysis of the real-life dataset to aid understanding of the data.  

Table 10: Descriptive statistics of the real-life data 

 Sum Mean Std. Dev Variance Skewness Kurtosis 

Golf tees 250 27.78 25.47 648.94 1.98 4.11 

Immigrant 1880 313.33 656.05 430397.47 2.39 5.76 

Recidivism 11930 1988.33 2414.02 5827499.87 1.62 2.34 

Bowel 122 17.43 7.83 61.29 0.72 0.09 

 

Data on golf tees, illegal immigrants not effectively expelled from the Netherlands, 

and recidivism of offenders in the Nigerian correctional centres were positively 

skewed with a sharper peak and heavier tails, reflecting the presence of more 

extreme values than a normal distribution. Also, the bowel cancer data was 

moderately skewed (skewness < 1) and less dispersed (kurtosis <1). The 

Zelterman-type estimator provided a good estimate for dataset that are strongly 

skewed to the right, while the Mantel-Haenszel-type estimator provides a good 

estimate for datasets that are less dispersed and moderately skewed to the right. 

 

4. CONCLUSION 

By introducing and validating the Zelterman-type and the Mantel-Haenszel-type 

estimators based on the zero-truncated discrete Lindley distribution, the research 

provides robust alternatives that significantly improve estimation precision. 

Simulation results confirmed that these estimators exhibit lower relative bias and 

error rates across varying conditions compared to their competitors.  Applications 

to real-world datasets ranging from golf tees data, illegal immigrant populations 

in the Netherlands to recidivism of offenders in the Nigerian correctional centres, 

consistently showed that the Zelterman-type estimator performed better. The 

Mantel-Haenszel-type also proved essential in contexts where other models fail to 

account for hidden subpopulations such as the Bowel cancer patient data. The 

proposed estimators offer valuable tools for researchers and policymakers seeking 

more dependable population size estimates in complex and hidden populations. 

This study focused primarily on single-source capture-recapture data. Future 
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research should investigate the applicability of the proposed estimators to multi-

list capture-recapture scenarios. 
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APPENDIX 

𝑉𝑎𝑟(𝑁̂) = 𝑉𝑎𝑟𝑛{𝐸(𝑁̂ 𝑛⁄ )} + 𝐸𝑛{𝑉𝑎𝑟(𝑁̂ 𝑛⁄ )}            (27) 

A.1 Variance Estimation of Zelterman-type estimator 

The variance of the Zelterman-type comprises of two sources of variation arising 

from the random sample 𝑛, and the other as a result of the predictive value 𝑝̂0 

based on the observed individuals 𝑛. Note that  𝐸(𝑁̂ 𝑛⁄ ) ≈
𝑛

1−𝑝0
,  thus solving the 

first term by the delta method becomes, 

𝑉𝑎𝑟𝑛{𝐸(𝑁̂ 𝑛⁄ )} = 𝑉𝑎𝑟𝑛 {
𝑛

1−𝑝0
} =

1

(1−𝑝0)2
𝑣𝑎𝑟(𝑛) =

𝑁𝑝0(1−𝑝0)

(1−𝑝0)2
          (28) 

Since 𝐸(𝑛) ≈ 𝑁(1 − 𝑝0), the expression for the variance can be estimated thus,  

𝑉𝑎𝑟𝑛{𝐸(𝑁̂ 𝑛⁄ )} =
𝑛𝑝0

(1−𝑝0)2
 . 

Note that for ZTDLD, 

  𝑝̂0 =
((

3𝑓1
2𝑓2

)−1)

2

(
3𝑓1
2𝑓2

)
2 =

(3𝑓1−2𝑓2)2

(3𝑓1)2
              (29) 

thus, 

𝑉𝑎𝑟𝑛{𝐸(𝑁̂ 𝑛⁄ )} =
𝑛(3𝑓1)2(3𝑓1−2𝑓2)2

(12𝑓1𝑓2−4𝑓2
2)

2              (30) 

The second term on the right-hand side of equation (27) 

𝑉𝑎𝑟(𝑁̂ 𝑛⁄ ) = 𝑣𝑎𝑟 (
𝑛(

3𝑓1
2𝑓2

)
2

2(
3𝑓1
2𝑓2

)−1
)             (31) 

where 𝑤 =
(

3𝑓1
2𝑓2

)
2

2(
3𝑓1
2𝑓2

)−1
= (

9

4
)

𝑓1
2

𝑓2(3𝑓1−𝑓2)
            (32) 

𝑉𝑎𝑟(𝑁̂ 𝑛⁄ ) = 𝑣𝑎𝑟(𝑛𝑤) ≈ 𝑛2𝑣𝑎𝑟(𝑤)            (33) 
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Hence, by applying the bivariate delta method on the expression 𝑣𝑎𝑟(𝑤), the 

approximation is obtained as; 

𝑣𝑎𝑟(𝑤) ≈ ∇𝜑(𝑓1, 𝑓2)𝑇𝑐𝑜𝑣(𝑓1, 𝑓2)∇𝜑(𝑓1, 𝑓2)             (34) 

where,  

∇𝜑(𝑓1, 𝑓2) = [
(

𝛿(𝑤)

𝛿𝑓1
)

(
𝛿(𝑤)

𝛿𝑓2
)

] and ∇𝜑(𝑓1, 𝑓2)𝑇 = [(
𝛿(𝑤)

𝛿𝑓1
) (

𝛿(𝑤)

𝛿𝑓2
)]  

𝛿(𝑤)

𝛿𝑓1
= [

27𝑓1
2𝑓2−18𝑓1𝑓2

2

(2𝑓2(3𝑓1−𝑓2))
2 ]              (35) 

Also, the derivative of 𝑤 with respect to 𝑓2 is obtained as follows; 

𝛿(𝑤)

𝛿𝑓2
=

18𝑓1
2𝑓2−27 𝑓1

3

(2𝑓2(3𝑓1−𝑓2))
2               (36) 

Hence equation (34) becomes: 

𝑣𝑎𝑟(𝑤) =

(
27𝑓1

2𝑓2−18𝑓1𝑓2
2

(2𝑓2(3𝑓1−𝑓2))
2

18𝑓1
2𝑓2−27 𝑓1

3

(2𝑓2(3𝑓1−𝑓2))
2) (

𝑓1 (1 −
𝑓1

𝑛
)

−𝑓1𝑓2

𝑛

−𝑓1𝑓2

𝑛
𝑓2 (1 −

𝑓2

𝑛
)

) (

27𝑓1
2𝑓2−18𝑓1𝑓2

2

(2𝑓2(3𝑓1−𝑓2))
2

18𝑓1
2𝑓2−27 𝑓1

3

(2𝑓2(3𝑓1−𝑓2))
2

)      (37) 

which can further be simplified as; 

𝑣𝑎𝑟(𝑤) =
324𝑓1

3

16[3𝑓1−𝑓2]4
−

648𝑓1
4

16𝑓2[3𝑓1−𝑓2]4
−

243𝑓1
5

16𝑓2
2[3𝑓1−𝑓2]4

+
729𝑓1

6

16𝑓2
3[3𝑓1−𝑓2]4

        (38) 

Hence, equation (33) becomes: 

𝑉𝑎𝑟(𝑁̂ 𝑛⁄ ) = 𝑛2𝑣𝑎𝑟(𝑤) = 𝑛2 (
324𝑓1

3

16[3𝑓1−𝑓2]4
−

648𝑓1
4

16𝑓2[3𝑓1−𝑓2]4
−

243𝑓1
5

16𝑓2
2[3𝑓1−𝑓2]4

+
729𝑓1

6

16𝑓2
3[3𝑓1−𝑓2]4

)   

      (39) 

A.2 Variance estimation for the Mantel-Haenszel-type population size 

estimator 

Here, we assume that the variation comes from only one source, and thus the 

variance is computed by the first term of the conditioning technique of variance 

estimation by Bohning (2008). This same approach was utilized by Anan et al. 

(2019), where 𝑛 is assumed to be fixed.  

𝑉𝑎𝑟(𝑁̂𝑀𝑇) = 𝑉𝑎𝑟𝑛{𝐸(𝑁̂ 𝑛⁄ )}             (40)

  

Considering the parameter of the Mantel-Haenszel-type estimator  𝑝̂0 =

(
𝑆−𝑚

𝑆
)

2

and the associated population size estimator 𝑁̂𝑀𝑇 =
𝑛

1−(
𝑆−𝑚

𝑆
)

2. Starting from 

the right-hand side of equation (41), where 𝐸(𝑁̂ 𝑛⁄ ) ≈
𝑛

1−𝑝0
,   
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thus 𝑉𝑎𝑟𝑛 (
𝑛

1−𝑝0
) = (

1

1−𝑝0
)

2

𝑉𝑎𝑟𝑛(𝑛)             (41) 

𝑉𝑎𝑟𝑛 (
𝑛

1−𝑝0
) = (

1

1−𝑝0
)

2

𝑁𝑝0(1 − 𝑝0)             (42) 

where 𝐸(𝑛) ≈ 𝑁(1 − 𝑝0)and  𝑝̂0 = (
𝑆−𝑚

𝑆
)

2

  

hence, 𝑉𝑎𝑟𝑛 (
𝑛

1−𝑝0
) = (

1

1−𝑝0
)

2

𝑛𝑝0 s 

Thus, the estimated variance is;  

𝑉𝑎𝑟(𝑁̂𝑀𝑇) = 𝑉𝑎𝑟𝑛 (
𝑛

1−𝑝0
) =

𝑛𝑆2(𝑆−𝑚)2

(2𝑚𝑆−𝑚2)2
            (43) 

 


