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Abstract

This study uses Falkner-type hybrid block methods to address the numerical solution of
second-order ordinary differential equations (ODEs). The primary challenge with
traditional approaches is their limited efficiency and accuracy in handling stiff ODEs and
complex boundary conditions. A novel hybrid block method that integrates the Falkner
framework with fixed step-size techniques is proposed to overcome these limitations. The
coefficients of the new schemes are obtained via Taylor’s series expansion. The
transformation of the derived methods to the block scheme promotes easy implementation
and enhances convergence. The hybrid scheme is implemented, and its performance is
validated through a series of benchmark problems, comparing the numerical solution of
the proposed scheme with the exact solution of ODEs problems. The efficacy of this method
is demonstrated with two numerical experiments, elucidating its stability and
convergence properties. The results show the computational efficacy of the new scheme,
which shows that the proposed scheme is a novel numerical tool for solving second-order
ODEs with implications for various application areas in engineering and applied
mathematics.

Keywords: Falkner hybrid method, hybrid block method, second-order initial value
problems, oscillatory problems, stiff problems.

1. INTRODUCTION

Solving ordinary differential equations (ODESs) is a fundamental task in various
fields of science and engineering, encompassing dynamics, control systems, and
mathematical modeling. Analyzing these equations is crucial for understanding
the dynamics of systems modeled by them.

One common approach is the method of characteristic equations, often applied to
linear ODEs with constant coefficients. This method involves finding solutions in
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the form of exponentials, allowing for straightforward integration of the terms.
For non-homogeneous equations, the method of undetermined coefficients and
parameter variation can be employed to find particular solutions that complement
the homogeneous solution.
Additionally, techniques such as the Laplace transform can facilitate the solution
of initial value problems, transforming the ODE into an algebraic equation. For
second-order linear ODEs, series solutions can also be utilized, particularly when
dealing with variable coefficients or when singular points are present. Several
analytical methods (the Adomian decomposition method in Zeidan et al. (2020),
the homotopy type method in Turq (2020), the Perturbation Iteration method in
Singh and Reddy (2020), Pakdemirli and Aksoy (2024)) exist for solving second-
order ODEs, each suited for different types of equations based on their
characteristics.
In situations where the analytical methods fail, the numerical formula for second-
order ODEs comes in handy. Interestingly, the second-order initial value problems
(IVPs),

y" (0= £ % y09, ¥'(9),

y(X) =Yo, Y'(0)=Y5%, (1)

X € [X, X, ]
are particularly significant due to their rich applications, ranging from mechanical
vibrations to fluid dynamics. Traditional numerical methods, such as Euler’s
method and the Runge-Kutta family, (see Fatunla, (1988), Lambert, (1973),
Lambert, (1991), and Butcher (2008)) provide established approaches for solving
these equations but often come with limitations regarding accuracy and stability,
especially when faced with stiff systems or high-order dynamics.
In recent years, there has been a growing interest in formulating more
sophisticated numerical methods that can enhance solution accuracy and
computational efficiency.
The rest of this paper is organized as follows: Section 2 deals with the general
formulation, order conditions, the block format, and the stability analysis of the
proposed Falkner-type hybrid linear multistep method (FHLMM). In Section 3,
numerical experiments are carried out, and the numerical results show the
robustness of the new methods. Section 4 is concerned with conclusions and
discussions.

2. MATERIALS AND METHOD

This paper introduces a new hybrid block method with two hybrid points
specifically designed for the numerical solution of the second-order initial value
problems (1). The proposed methods employ a predictive structural framework
defined by the equations:
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Yoee = 8Ynar + &y +h?(bo £+ b, (F o+ )+ b, (Fs + o))

Ve = O-oy'n+1+h(go fo+ gl(fn+l + fn—v—1)+ gz( foiz + fn—v+l))’ 2)

c=(cp Cr 0 ) Y= £, + ff,.
where, as usual, the y, .. andy', .. are the approximate solution points to the exact
solutions aty(x), and y'(x) respectively. Here, h represents the step size, and the
coefficients ao, a1, o, bo, b1, b2, go, g1, and g2 are meticulously chosen to optimize the
accuracy and stability of the numerical method in (2). By incorporating
information from multiple previous time steps and their derivatives, these
methods achieve higher-order accuracy than many classical techniques, effectively
reducing numerical error while maintaining computational efficiency (See
Okuonghae and Ozobokeme, 2024). Vector c contains a set of data or points on the
real line on the x-axis. At any point where the value of the off-step point v coincides
with a point in the vector ¢, a hybrid method is formed. The off-step point, v in
(2), lies between —« and 2. The value of v is chosen arbitrarily to achieve the
desirable stability properties. The structural formulation of the method in (2) is
different from the methods in Jator (2010), Ramos et al. (2016), and Ramos et al.
(2017).

2.1 The Derivation of the Hybrid Method

This subsection explains how the implicit hybrid method in (2) is derived.
Expanding the methods in (2) via Taylor’s series yields the following order
conditions for the first method in (2):

—(=14+ay) =0, —(ap+a,—¢) =0,
~2((ao +2(ay + b +2(b; + b)) — ¢*)) =0, ®)

1
g(_ao - 3a1 + 6vb1 + 6(_3 + v)bz + C3) = 0,

—i((ao +4(a; +3(2+ v+ )by +3(55 + (=2 + v)v)b,) — c4)) = 0.
In like manner, the order conditions for the second method in (2) are as follows,
_(_1 + 0_0) = 0, —(a1 + gO + 2(91 + gZ) - C) = 0,
%(—a1 + 2vg, + 2(-3 +v)g, +c?) =0, (4)
%((00 +3R2+v(2+v))g; +36G+(-2+v)v)g, —c3)) =0.

Solving the above system in (3) and (4) for the values of the coefficients ao, a1, g,
bo, b1, b2, go, g1, and g2, respectively, and substituting the arising results into (2)
gives

Yn+c = QoYn+1 + alhy,n+1 + hz(bofn + bl(fn+1 + fn—v—l) + b2(fn+2 + fn—v+1))/ (5)
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where
a, =1, a, =—-1+c¢,
by
_ —(21—42c +18c? + 6¢* — 3¢* + 11v — 30cv + 27c*v — 8c®v — 3v* + 6¢v? — 3c?v?)
6(—6 — 9v + v2) ’

—(~114+18¢c—-10c3+3c*+5v-8cv+4c3v—c*v—4v? +6cv? -2c3v?)
12(-6—9v+v2)

—(8—12c + 4¢3 + 11v — 16¢cv + 4c3v + ¢*v + 4v? — 6¢cv? +203v2)
12(—6 — 9v + v?)

b1=

)

b, =

Similarly, the derivative method gives,

y,n+c = UOy,n+1 + h(gofn + 91(Fas1 + fo—v-1) + 92(fas2 + fa—v+1)),  (6)

where

—7+6c+3c2-2c3-5v+9cv—4c2v4+v2—cv?

g =1, o=~ —6—9v+v2 !

. 9- 15¢c? + 6¢3 — 4v + 6¢%v — 2¢3v + 3v? — 3¢%v?
g1 = 6(—6 — 9v + v2) ’
—6+ 6¢% —8v + 6¢%v + 2c3v — 3v? + 3c?v?

6(—6 —9v + v?)

g2 = —
Fixing v = % and ¢ = (— Z, 0,%, 2)T in (5) and (6) gives the following formulas,

5 (625, , 275 , 875

, 125 605 125
e Tl Ty 984(f‘ f5+1) 984(f?+%'kf£+2) ’

. 103 19 29
Yo = Yner = WY oy + 02 (5= fo = 5z (Fua + ) 32 (Fd + fosz) )

31 43

i I 37
Y=Y ™ h <_an + 246 (fn_% + fn+1) 216 (fm_% + fn+2)): 7)

1 85 49
Vst = Yna1 = Eh}’ ne1 T (%fn 3936 (fn_g + fn+1) UEETE) (fn% + fn+2)>»

, , 83 131
Vin =V s+ 1o fu b g (Fat + fues) = gag (Fust + fusz) )

23 13 21
yn+z==yn+1*'h&”n+1+'h2<246f‘ 246<f ﬁ“*) 82<f?+%+'ﬁ“4)>’
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y’n+2 = y,n+1 <__fn

13
246

iyt o) (1 1))

2.2 The Block Format of the Hybrid Method in (2)

In the spirit of Ramos et al. (2016), the block method in (7) is define as,

AY, = hBY,' + hCF,

where A, B, C are matrices of coefficients of dimensions of 8 by 5, and

Yo = OUn-v-1, Yo Yn-v+1,Yn+1, Yns2)',
Yo' =0 Y Y s Y nes Yne2)'
Fy ==(fﬁ—v—1:f%'f%—v+1rfh+1»f%+2)T:
with v = % The picture of (7) in (8) format is,

|
[N

SO OO OO O

SO OO Ok oo

SO O, OO OoOOo
o

pail

275
/3936
—-605

984
-19

246
31

_ 246
C= -85

3936
83

984
-13

246
-13

246

SR OO OO oo

625

246
—-125

82
103

246
—-37

41
23

246
-33

82
23

246
-3

41

/ 0 0 —
2
-1 0 1
0 0 0 -1
| 0 -1 0 1
B = -1
0 0 0 —
2
0 0o -1 1
\ 0 0 0 1
0 0 0 -1
875 275 875
3936 3936 3936\
125  —605 125
984 984 984
29 -19 29
246 246 246
-43 31  -43
246 246 246
49 -85 49
1312 3936 1312
-131 83  -131
984 984 984
21 -13 21
82 246 82
145 -3 145
246 41 246

=, OoO O O OO0

(8)

As in Lambert (1991), if ¥ (x) is an arbitrary and sufficiently differentiable
function, then the linear difference operator U associated with the block method

in (8) is,

U[IIJ(X), h] = l/J(Xn + Ch) - a_Olp(xn + h)

— hay ' (xy + h) — h?(Qy" (%)

+ (" (o + R) + " (0 — (v + DR)) + Q" (x + 2R) + Y (x, — (v — 1)),

©)
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and
O (x); h] = P'(x, + ch) — oo’ (% + h) — R(Pet" (%)
+®1 (Y (o + h) + 9" (0 — (0 + D)) + B, (Y (xn + 20) + 9" (x, — (v = Dh))).
(10)
where a,, a4, .(2_0, .(2_1, .(2_2, 60,_6150, 6151, and 6152 are the vector columns of the matrices

A, B, C. By Taylor’s series expansion of ¥(x, + ch), Y'(x, + ch), Y(x, + h),

YO +h), Y0, Y(x,t+h), ¥ — @+ Dh) P"(x, — (v —1h)), and
Y"(x, + 2h) in (9) and (10) about x,, respectively we obtain

UlY(x); k] = Co y () + Crh y' () + €y B2y () +. . . +Cq RIy @D (x,) +. . .

The order p of the difference operator U[i(x); h] is a unique integer p such that C,,

g =0(1)p+1, Cpyp # 0. The C,,, is the error constant of the method in (7) and is
given by

C. = (—11375 —3875 —4631 241 —10949 2749 —4459 —191)T
5 7\ 47232 ’ 15744’ 29520’ 984’ 236160’ 15744’ 29520’ 984

The order of the method in (8) is p = 3. In the spirit of Fatunla (1991), the following
definition is given.

Definition 1 (cf. Fatunla (1991)) A block method (8) is zero-stable as h — 0, and if
the roots of the first characteristic polynomial have modulus less than or equal to
one and those of modulus one do not have multiplicity greater than 2, i.e. the roots
of

pw) =det( Y7 AOwWk) =0, A® =—, (11)
satisty ‘Wj‘ <1 and for those roots with ‘Wj‘ =1, the multiplicity does not exceed 2.

In the spirit of Fatunla (1991), the first characteristic matrices of the method in (7)
is obtained as,

A®y, — AWy =0,

where
1 0 0 0 0 0 0 1 Yn-3/2
01 .0 0 0 0 0 1 Yn
0) — .4 — . — . —
4 0010"4 0001'Y” yn+1/z’Y"‘1
0 0 0 1 0 0 0 1 VYn+2
yn—5/2
yn—l
Yn-1/2
yn+1

From (11), the first characteristic polynomial of (8) is
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1 0 0 O 0 0 0 1
e I P I ) B
0 0 0 1 0 0 0 1

This result obtained from the zero-stability analysis shows that the block method
in (7) is zero-stable, consistent, and convergent since the roots of the first
characteristics polynomial satisfied | w;| < 1, and the order of the new block is
greater than 1.

2.3 The Stability Analysis of the Block Method in (2)

This subsection will analyze the stability of the block method applied to the
generalized second-order ODEs test scalar problem of the form,

y'(x) = —2uy'(x) — p*y (). (12)
Stability is crucial in numerical analysis as it dictates how errors propagate

through computations and whether the numerical solutions converge to the true
solution. The definition of absolute stability follows immediately.

Definition 2 The block method in (8) is said to be stable if the interval of absolute
stability is (0, P), where P is a real number.

Applying the formula in (8) to (12) yields a system of eight equations involving

five distinct derivative terms y'n_%, Y ¥, L Y'ni1 Yneze To simplify the

analysis, we employed MATHEMATICA software to eliminate these derivative
terms from the equations, resulting in three stability polynomials expressed solely
interms of ¥y 3, Yo, ¥,,1, Yni1, Ynsz- As an example, one of the derived stability
2 2

polynomials is,

n(w,z) = 85w?z% + wé(—23256 + 21494z — 48552%) + 20(1056 + 6167z —
21662z2) + 5w%(14808 — 28542z + 172%) — w(71904 + 2124z + 485522), (12)
where z = ph, d = %, e= _73 Plotting the absolute values of the roots of the

stability polynomial in (13) in the boundary locus sense yields the method's
stability region to be (-0.2869, 0); see Figure 1.
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Figure 1: The stability region (the interior part) of the methods in (8)

3. RESULT AND DISCUSSION

This section presents the results of applying the Falkner-type hybrid block method
to two test problems, demonstrating its capabilities and effectiveness. The
performance metrics such as accuracy and computational resources utilized will
be discussed. Furthermore, a critical analysis of the advantages of the Falkner-type
hybrid block method will be highlighted to show its robustness and versatility in
handling a diverse range of ODE problems.

3.1 Numerical Experiment and Results

In this subsection, detailed results will be presented, illustrating the method’s
performance across various parameters and conditions. The block method in (11)
is implicit. Therefore the non-linearity arising from the method when applied to
the test problems is resolved using a modified Newton Raphson scheme using the
explicit Runge-Kutta Nystrom method as starter, see Okuonghae and Ozobokeme
(2024).

Example 1: Consider the non-linear problem given by
1

y'=x(y'f, y0)=1, y (=2,

1,.(2+X
y(X) :1+E In(z—j

with an exact solution

This problem was solved by Adeyefa (2021) with order p > 3. The accuracy of the
proposed method is measured using maximum absolute error:|y(x,)-y,|. See Table

1 below.
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Table 1: The exact solution, numerical solution of the new method, and error in the new
method for Example 1 with h =0.003125 and p = 3.

X Exact Solution Numerical solution of Maximum
y(X,) the new method Y Absolute Error
0.1 1.053175062421496 1.053175062441957 2.04609E-11
0.2 1.103492920586838 1.103492920625291 3.84532E-11
0.3 1.154338911580413 1.154338911634263 5.38502E-11
0.4 1.205989894564679 1.205989894632067 6.73880E-11
0.5 1.258748937687529 1.258748937767193 7.96638E-11
0.6 1.312957225169341 1.312957225260525 9.11837E-11
0.7 1.369009467368560 1.369009467470969 1.02408E-10
0.8 1.427374729847812 1.427374729961602 1.13790E-10
0.9 1.488625715831921 1.488625715957738 1.25816E-10
1.0 1.553481533942765 1.553481534081842 1.39076E-10

Table 1 shows the accuracy of the proposed method; however, it was not possible
to compare the results of this method with other existing methods because recently
developed methods in the literature have order p > 3.

Example 2: Consider the system of ODEs,
nw_ Th

yi"'=—— y.(0) =1, y1(0) =0,
" _y !

y," = —2,,(0) = 1, y5(0) = 0,
r=yy2+y?  x€[01]

This stiff problem in Example 2 was solved by Okuonghae and Ozobokeme (2024).
Table 2 shows the accuracy of the new method.

Table 2: The solution components (Sol. Comp.), exact, numerical solution and the absolute
error for Example 2 with h = 0.003125 and p = 3.

X Exact Solution Numerical solution of Maximum
the new method Absolute Error
0.1 9.953126920352170E-1 | 9.946873279439612E-1 6.25364E-4
0.2 9.794409517155484E-1 | 9.806839668301461E-1 1.24301E-3
0.3 9.544083252577275E-1 | 9.562565371015926E-1 1.84821E-3
0.4 9.198395662993789E-1 | 9.222744736527696E-1 2.43490E-3
0.5 8.760800744531020E-1 | 8.790773140286808E-1 2.99723E-3
0.6 8.235670800964600E-1 | 8.270966699692076E-1 3.52958E-3
0.7 7.628252757105762E-1 | 7.668519148872761E-1 4.02663E-3
0.8 6.944615733263037E-1 | 6.989449944613964E-1 4.48342E-3
0.9 6.191590404598302E-1 | 6.240544121934203E-1 4.89537E-3
1.0 5.376700751278498E-1 | 5.429284500258345E-1 5.25837E-3
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3.2 Discussion

The results in Table 2 highlight the accuracy of the new method, but also reveal
that numerical accuracy degrades during computation for several reasons. For stiff
ordinary differential equations (ODEs), low-order methods can become unstable
or inefficient, necessitating techniques with larger stability intervals. Additionally,
a constant step size may not be suitable, as a step size that is too large can lead to
missed significant events and compounding inaccuracies. Moreover,
computations involving floating-point arithmetic can accumulate round-off
errors, particularly in iterative methods, where small errors may amplify and
propagate, further affecting the results.

4. CONCLUSION

In conclusion, our examination of the proposed method reveals its notable
performance advantages when applied to mildly stiff ordinary differential
equations (ODEs). The proposed method demonstrates efficiency and accuracy,
effectively handling the complexities of this specific class of problems. Its ability
to provide reliable solutions with a manageable computational cost makes it a
strong candidate for practitioners seeking to tackle mildly stiff ODEs in various
applications.
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