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Abstract 

This study uses Falkner-type hybrid block methods to address the numerical solution of 

second-order ordinary differential equations (ODEs). The primary challenge with 

traditional approaches is their limited efficiency and accuracy in handling stiff ODEs and 

complex boundary conditions. A novel hybrid block method that integrates the Falkner 

framework with fixed step-size techniques is proposed to overcome these limitations. The 

coefficients of the new schemes are obtained via Taylor’s series expansion. The 

transformation of the derived methods to the block scheme promotes easy implementation 

and enhances convergence. The hybrid scheme is implemented, and its performance is 

validated through a series of benchmark problems, comparing the numerical solution of 

the proposed scheme with the exact solution of ODEs problems. The efficacy of this method 

is demonstrated with two numerical experiments, elucidating its stability and 

convergence properties. The results show the computational efficacy of the new scheme, 

which shows that the proposed scheme is a novel numerical tool for solving second-order 

ODEs with implications for various application areas in engineering and applied 

mathematics. 

 

Keywords: Falkner hybrid method, hybrid block method, second-order initial value 

problems, oscillatory problems, stiff problems. 

  

1. INTRODUCTION 

Solving ordinary differential equations (ODEs) is a fundamental task in various 

fields of science and engineering, encompassing dynamics, control systems, and 

mathematical modeling. Analyzing these equations is crucial for understanding 

the dynamics of systems modeled by them.  

One common approach is the method of characteristic equations, often applied to 

linear ODEs with constant coefficients. This method involves finding solutions in 
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the form of exponentials, allowing for straightforward integration of the terms. 

For non-homogeneous equations, the method of undetermined coefficients and 

parameter variation can be employed to find particular solutions that complement 

the homogeneous solution. 

Additionally, techniques such as the Laplace transform can facilitate the solution 

of initial value problems, transforming the ODE into an algebraic equation. For 

second-order linear ODEs, series solutions can also be utilized, particularly when 

dealing with variable coefficients or when singular points are present. Several 

analytical methods (the Adomian decomposition method in Zeidan et al. (2020), 

the homotopy type method in Turq (2020), the Perturbation Iteration method in 

Singh and Reddy (2020), Pakdemirli and Aksoy (2024)) exist for solving second-

order ODEs, each suited for different types of equations based on their 

characteristics.   

In situations where the analytical methods fail, the numerical formula for second-

order ODEs comes in handy. Interestingly, the second-order initial value problems 

(IVPs), 
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are particularly significant due to their rich applications, ranging from mechanical 

vibrations to fluid dynamics. Traditional numerical methods, such as Euler’s 

method and the Runge-Kutta family, (see Fatunla, (1988), Lambert, (1973), 

Lambert, (1991), and Butcher (2008)) provide established approaches for solving 

these equations but often come with limitations regarding accuracy and stability, 

especially when faced with stiff systems or high-order dynamics. 

In recent years, there has been a growing interest in formulating more 

sophisticated numerical methods that can enhance solution accuracy and 

computational efficiency.  

The rest of this paper is organized as follows: Section 2 deals with the general 

formulation, order conditions, the block format, and the stability analysis of the 

proposed Falkner-type hybrid linear multistep method (FHLMM). In Section 3, 

numerical experiments are carried out, and the numerical results show the 

robustness of the new methods. Section 4 is concerned with conclusions and 

discussions. 

2. MATERIALS AND METHOD 

This paper introduces a new hybrid block method with two hybrid points 

specifically designed for the numerical solution of the second-order initial value 

problems (1). The proposed methods employ a predictive structural framework 

defined by the equations: 
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where, as usual, the 
cny +
 and

cny +'  are the approximate solution points to the exact 

solutions at )(xy , and )(' xy  respectively. Here, h represents the step size, and the 

coefficients a0, a1, 
0 , b0, b1, b2, g0, g1, and g2 are meticulously chosen to optimize the 

accuracy and stability of the numerical method in (2). By incorporating 

information from multiple previous time steps and their derivatives, these 

methods achieve higher-order accuracy than many classical techniques, effectively 

reducing numerical error while maintaining computational efficiency (See 

Okuonghae and Ozobokeme, 2024). Vector c contains a set of data or points on the 

real line on the x-axis. At any point where the value of the off-step point v coincides 

with a point in the vector c, a hybrid method is formed.  The off-step point, v in 

(2), lies between −  and 2. The value of v is chosen arbitrarily to achieve the 

desirable stability properties. The structural formulation of the method in (2) is 

different from the methods in Jator (2010), Ramos et al. (2016), and Ramos et al. 

(2017). 

 

2.1 The Derivation of the Hybrid Method 

This subsection explains how the implicit hybrid method in (2) is derived.   

Expanding the methods in (2) via Taylor’s series yields the following order 

conditions for the first method in (2): 

−(−1 + 𝑎0) = 0, −(𝑎0 + 𝑎1 − 𝑐) = 0, 

                                    −
1

2
((𝑎0 + 2(𝑎1 + 𝑏0 + 2(𝑏1 + 𝑏2)) − 𝑐

2)) = 0,                       (3) 

1

6
(−𝑎0 − 3𝑎1 + 6𝑣𝑏1 + 6(−3 + 𝑣)𝑏2 + 𝑐

3) = 0, 

                  −
1

24
((𝑎0 + 4(𝑎1 + 3(2 + 𝑣(2 + 𝑣))𝑏1 + 3(5 + (−2 + 𝑣)𝑣)𝑏2) − 𝑐

4)) = 0. 

In like manner, the order conditions for the second method in (2) are as follows, 

−(−1 + 𝜎0) = 0, −(𝑎1 + 𝑔0 + 2(𝑔1 + 𝑔2) − 𝑐) = 0, 

                                          
1

2
(−𝑎1 + 2𝑣𝑔1 + 2(−3 + 𝑣)𝑔2 + 𝑐

2) = 0,                            (4) 

                                
1

6
((𝜎0 + 3(2 + 𝑣(2 + 𝑣))𝑔1 + 3(5 + (−2 + 𝑣)𝑣)𝑔2 − 𝑐0

3)) = 0. 

Solving the above system in (3) and (4) for the values of the coefficients a0, a1, 𝜎0, 

b0, b1, b2, g0, g1, and g2, respectively, and substituting the arising results into (2) 

gives 

𝑦𝑛+𝑐 = 𝑎0𝑦𝑛+1 + 𝑎1ℎ𝑦′𝑛+1 + ℎ
2(𝑏0𝑓𝑛 + 𝑏1(𝑓𝑛+1 + 𝑓𝑛−𝑣−1) + 𝑏2(𝑓𝑛+2 + 𝑓𝑛−𝑣+1)),     (5) 
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where 

𝑎0 = 1, 𝑎1 = −1 + 𝑐, 

𝑏0

=
−(21 − 42𝑐 + 18𝑐2 + 6𝑐3 − 3𝑐4 + 11𝑣 − 30𝑐𝑣 + 27𝑐2𝑣 − 8𝑐3𝑣 − 3𝑣2 + 6𝑐𝑣2 − 3𝑐2𝑣2)

6(−6 − 9𝑣 + 𝑣2)
, 

                                               𝑏1 =
−(−11+18𝑐−10𝑐3+3𝑐4+5𝑣−8𝑐𝑣+4𝑐3𝑣−𝑐4𝑣−4𝑣2+6𝑐𝑣2−2𝑐3𝑣2)

12(−6−9𝑣+𝑣2)
,                                  

𝑏2 =
−(8 − 12𝑐 + 4𝑐3 + 11𝑣 − 16𝑐𝑣 + 4𝑐3𝑣 + 𝑐4𝑣 + 4𝑣2 − 6𝑐𝑣2 + 2𝑐3𝑣2)

12(−6 − 9𝑣 + 𝑣2)
. 

 

Similarly, the derivative method gives, 

                   𝑦′𝑛+𝑐 = 𝜎0𝑦′𝑛+1 + ℎ(𝑔0𝑓𝑛 + 𝑔1(𝑓𝑛+1 + 𝑓𝑛−𝑣−1) + 𝑔2(𝑓𝑛+2 + 𝑓𝑛−𝑣+1)),    (6) 

where 

                  𝜎0 = 1,      𝑔0 = −
−7+6𝑐+3𝑐2−2𝑐3−5𝑣+9𝑐𝑣−4𝑐2𝑣+𝑣2−𝑐𝑣2

−6−9𝑣+𝑣2
, 

𝑔1 = −
9 − 15𝑐2 + 6𝑐3 − 4𝑣 + 6𝑐2𝑣 − 2𝑐3𝑣 + 3𝑣2 − 3𝑐2𝑣2

6(−6 − 9𝑣 + 𝑣2)
, 

𝑔2 = −
−6 + 6𝑐2 − 8𝑣 + 6𝑐2𝑣 + 2𝑐3𝑣 − 3𝑣2 + 3𝑐2𝑣2

6(−6 − 9𝑣 + 𝑣2)
. 

Fixing 𝑣 =
1

2
  and 𝑐 = (−

3

2
, 0,

1

2
, 2)𝑇  in (5) and (6) gives the following formulas, 

𝑦
𝑛−

3

2

= 𝑦𝑛+1 −
5

2
ℎ𝑦′

𝑛+1
+ ℎ2 (

625

246
𝑓𝑛 +

275

3936
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) +
875

3936
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)), 

𝑦′
𝑛−

3

2

= 𝑦′
𝑛+1

+ ℎ(−
125

82
𝑓𝑛 −

605

984
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) +
125

984
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)), 

𝑦𝑛 = 𝑦𝑛+1 − ℎ𝑦
′
𝑛+1

+ ℎ2 (
103

246
𝑓𝑛 −

19

246
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) +
29

246
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)), 

                    𝑦′
𝑛
= 𝑦′

𝑛+1
+ ℎ (−

37

41
𝑓𝑛 +

31

246
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) −
43

246
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)),       (7) 

 

𝑦
𝑛+

1

2

= 𝑦𝑛+1 −
1

2
ℎ𝑦′

𝑛+1
+ ℎ2 (

23

246
𝑓𝑛 −

85

3936
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) +
49

1312
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)), 

𝑦′1
2
+𝑛
= 𝑦′

𝑛+1
+ ℎ (−

33

82
𝑓𝑛 +

83

984
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) −
131

984
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)), 

𝑦𝑛+2 = 𝑦𝑛+1 + ℎ𝑦
′
𝑛+1

+ ℎ2 (
23

246
𝑓𝑛 −

13

246
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) +
21

82
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)), 
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𝑦′
𝑛+2

= 𝑦′
𝑛+1

+ ℎ(−
3

41
𝑓𝑛 −

13

246
(𝑓
𝑛−

3

2

+ 𝑓𝑛+1) +
145

246
(𝑓
𝑛+

1

2

+ 𝑓𝑛+2)). 

2.2 The Block Format of the Hybrid Method in (2) 

In the spirit of Ramos et al. (2016), the block method in (7) is define as, 

𝐴𝑌𝑛 = ℎ𝐵𝑌𝑛
′ + ℎ2𝐶𝐹𝑛                  (8) 

where  𝐴, 𝐵, 𝐶 are matrices of coefficients of dimensions of 8 by 5, and   

                                             𝑌𝑛 = (𝑦𝑛−𝑣−1,  𝑦𝑛,  𝑦𝑛−𝑣+1, 𝑦𝑛+1,  𝑦𝑛+2)
𝑇, 

          𝑌𝑛′ = (𝑦
′
𝑛−𝑣−1

,  𝑦𝑛′,  𝑦
′
𝑛−𝑣+1

, 𝑦′𝑛+1 ,  𝑦′𝑛+2)
𝑇, 

           𝐹𝑛 = (𝑓𝑛−𝑣−1,  𝑓𝑛,  𝑓𝑛−𝑣+1, 𝑓𝑛+1,  𝑓𝑛+2)
𝑇 , 

with 𝑣 =
1

2
. The picture of (7) in (8) format is, 

𝐴 =

(

 
 
 
 
 

1 0 0 −1 0
0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0
0 0 1 −1 0
0 0 0 0 0
0 0 0 −1 1
0 0 0 0 0)

 
 
 
 
 

;   𝐵 =

(

 
 
 
 
 
 

0 0 0
−5

2
0

−1 0 0 1 0
0 0 0 −1 0
0 −1 0 1 0

0 0 0
−1

2
0

0 0 −1 1 0
0 0 0 1 1
0 0 0 −1 1)

 
 
 
 
 
 

; 

 

    𝐶 =

(

 
 
 
 
 
 
 
 
 
 

275

3936

625

246

875

3936

275

3936

875

3936
−605

984

−125

82

125

984

−605

984

125

984
−19

246

103

246

29

246

−19

246

29

246
31

246

−37

41

−43

246

31

246

−43

246
−85

3936

23

246

49

1312

−85

3936

49

1312
83

984

−33

82

−131

984

83

984

−131

984
−13

246

23

246

21

82

−13

246

21

82
−13

246

−3

41

145

246

−3

41

145

246 )

 
 
 
 
 
 
 
 
 
 

. 

As in Lambert (1991), if 𝜓(𝑥) is an arbitrary and sufficiently differentiable 

function, then the linear difference operator ℧ associated with the block method 

in (8) is, 

℧[𝜓(𝑥); ℎ] = 𝜓(𝑥𝑛 + 𝑐ℎ) − 𝑎0
_
𝜓(𝑥𝑛 + ℎ) − ℎ𝑎1

_
𝜓′(𝑥𝑛 + ℎ) − ℎ

2(𝛺0
_

𝜓′′(𝑥𝑛) 

+𝛺1
_

(𝜓′′(𝑥𝑛 + ℎ) + 𝜓′′(𝑥𝑛 − (𝑣 + 1)ℎ)) + 𝛺2
_

(𝜓′′(𝑥𝑛 + 2ℎ) + 𝜓′′(𝑥𝑛 − (𝑣 − 1)ℎ))),  

        (9) 
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and 

℧′[𝜓(𝑥); ℎ] = 𝜓′(𝑥𝑛 + 𝑐ℎ) − 𝜎0
_
𝜓′(𝑥𝑛 + ℎ) − ℎ(𝛷0

_

𝜓′′(𝑥𝑛) 

+𝛷1
_

(𝜓′′(𝑥𝑛 + ℎ) + 𝜓′′(𝑥𝑛 − (𝑣 + 1)ℎ)) + 𝛷2
_

(𝜓′′(𝑥𝑛 + 2ℎ) + 𝜓′′(𝑥𝑛 − (𝑣 − 1)ℎ))).   

     (10) 

where 𝑎0
_

, 𝑎1
_

, 𝛺0
_

, 𝛺1
_

, 𝛺2
_

, 𝜎0, 𝛷0
_

, 𝛷1
_

, and 𝛷2
_

 are the vector columns of the matrices  

𝐴, 𝐵, 𝐶. By Taylor’s series expansion of 𝜓(𝑥𝑛 + 𝑐ℎ), 𝜓′(𝑥𝑛 + 𝑐ℎ), 𝜓(𝑥𝑛 + ℎ), 

𝜓′(𝑥𝑛 + ℎ),  𝜓′′(𝑥𝑛),  𝜓′′(𝑥𝑛 + ℎ), 𝜓′′(𝑥𝑛 − (𝑣 + 1)ℎ)  𝜓′′(𝑥𝑛 − (𝑣 − 1)ℎ)), and 

𝜓′′(𝑥𝑛 + 2ℎ) in (9) and (10)  about 𝑥𝑛 respectively we obtain 

℧[𝜓(𝑥); ℎ] = 𝐶0
_

 𝑦(𝑥𝑛) + 𝐶1ℎ
−

 𝑦′(𝑥𝑛) + 𝐶2
−

 ℎ2𝑦′′(𝑥𝑛)+.  .  . +𝐶𝑞
−

 ℎ𝑞𝑦(𝑞)(𝑥𝑛) +.  .  . 

The order p of the difference operator ℧[𝜓(𝑥); ℎ] is a unique integer p such that  𝐶𝑞
−

, 

q = 0(1)p+1, 𝐶𝑝+2
−

≠ 0. The  𝐶𝑝+2
−

  is the error constant of the method in (7) and is 

given by 

𝐶5 = (
−11375

47232
,
−3875

15744
,
−4631

29520
,
241

984
,
−10949

236160
,
2749

15744
,
−4459

29520
,
−191

984
)
𝑇

. 

The order of the method in (8) is p = 3. In the spirit of Fatunla (1991), the following 

definition is given. 

Definition 1 (cf. Fatunla (1991)) A block method (8) is zero-stable as ℎ → 0, and if 

the roots of the first characteristic polynomial have modulus less than or equal to 

one and those of modulus one do not have multiplicity greater than 2, i.e. the roots 

of   

                                  𝜌(𝑤) = det (∑ 𝐴(𝑖)𝑤𝑘−𝑖
𝑘

𝑖=0
) = 0,     𝐴(0) = −𝐼,                       (11) 

satisfy  1jw  and for those roots with  1=jw , the multiplicity does not exceed 2.  

In the spirit of Fatunla (1991), the first characteristic matrices of the method in (7) 

is obtained as, 

     𝐴(0)𝑌𝑛 − 𝐴
(1)𝑌𝑛−1 = 0, 

where 

𝐴(0) = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

);  𝐴(1) = (

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

) ;  𝑌𝑛 =  ( 

𝑦𝑛−3 2⁄
𝑦𝑛

𝑦𝑛+1 2⁄
𝑦𝑛+2

) ; 𝑌𝑛−1 =

  ( 

𝑦𝑛−5 2⁄
𝑦𝑛−1
𝑦𝑛−1 2⁄
𝑦𝑛+1

)  . 

From (11), the first characteristic polynomial of (8) is 
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           𝜌(𝑤) = det(−(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)𝑤2 + (

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

)w) = −𝑤7(1 − 𝑤) = 0. 

This result obtained from the zero-stability analysis shows that the block method 

in (7) is zero-stable, consistent, and convergent since the roots of the first 

characteristics polynomial satisfied | 𝑤𝑗| ≤ 1, and the order of the new block is 

greater than 1. 

2.3 The Stability Analysis of the Block Method in (2) 

This subsection will analyze the stability of the block method applied to the 

generalized second-order ODEs test scalar problem of the form, 

𝑦''(𝑥) = −2𝜇𝑦′(𝑥) − 𝜇2𝑦(𝑥).               (12) 

Stability is crucial in numerical analysis as it dictates how errors propagate 

through computations and whether the numerical solutions converge to the true 

solution. The definition of absolute stability follows immediately. 

Definition 2 The block method in (8) is said to be stable if the interval of absolute 

stability is (0, Þ), where Þ is a real number. 

Applying the formula in (8) to (12) yields a system of eight equations involving 

five distinct derivative terms 𝑦′
𝑛−

3

2

 ,  𝑦′𝑛, 𝑦′
𝑛+

1

2

, 𝑦′𝑛+1,  𝑦′𝑛+2. To simplify the 

analysis, we employed MATHEMATICA software to eliminate these derivative 

terms from the equations, resulting in three stability polynomials expressed solely 

in terms of 𝑦
𝑛−

3

2

 ,  𝑦𝑛, 𝑦
𝑛+

1

2

, 𝑦𝑛+1,  𝑦𝑛+2. As an example, one of the derived stability 

polynomials is, 

𝜋(𝑤, 𝑧) = 85𝑤2𝑧2 + 𝑤𝑒(−23256 + 21494𝑧 − 4855𝑧2) + 20(1056 + 6167𝑧 −

2166𝑧2) + 5𝑤𝑑(14808 − 28542𝑧 + 17𝑧2) − 𝑤(71904 + 2124𝑧 + 4855𝑧2),       (12) 

where 𝑧 = μh, 𝑑 =
1

2
, 𝑒 =

−3

2
. Plotting the absolute values of the roots of the 

stability polynomial in (13) in the boundary locus sense yields the method's 

stability region to be (-0.2869, 0); see Figure 1. 
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Figure 1: The stability region (the interior part) of the methods in (8) 

 

3. RESULT AND DISCUSSION 

This section presents the results of applying the Falkner-type hybrid block method 

to two test problems, demonstrating its capabilities and effectiveness. The 

performance metrics such as accuracy and computational resources utilized will 

be discussed. Furthermore, a critical analysis of the advantages of the Falkner-type 

hybrid block method will be highlighted to show its robustness and versatility in 

handling a diverse range of ODE problems.  

3.1 Numerical Experiment and Results 

In this subsection, detailed results will be presented, illustrating the method’s 

performance across various parameters and conditions. The block method in (11) 

is implicit. Therefore the non-linearity arising from the method when applied to 

the test problems is resolved using a modified Newton Raphson scheme using the 

explicit Runge-Kutta Nystrom method as starter, see Okuonghae and Ozobokeme 

(2024). 

Example 1: Consider the non-linear problem given by 

( ) ,
2
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=== yyyxy

 
with an exact solution 
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


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+
+=

x

x
Inxy  

This problem was solved by Adeyefa (2021) with order p > 3. The accuracy of the 

proposed method is measured using maximum absolute error: ( ) nn yxy − . See Table 

1 below. 
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 Table 1: The exact solution, numerical solution of the new method, and error in the new   

method for Example 1 with h = 0.003125 and p = 3. 

   X Exact Solution  

)( nxy  
Numerical solution of 

the new method ny  

Maximum 

Absolute Error  

0.1 1.053175062421496 1.053175062441957 2.04609E-11 

0.2 1.103492920586838 1.103492920625291 3.84532E-11 

0.3 1.154338911580413 1.154338911634263 5.38502E-11 

0.4 1.205989894564679 1.205989894632067 6.73880E-11 

0.5 1.258748937687529 1.258748937767193 7.96638E-11 

0.6 1.312957225169341 1.312957225260525 9.11837E-11 

0.7 1.369009467368560 1.369009467470969 1.02408E-10 

0.8 1.427374729847812 1.427374729961602 1.13790E-10 

0.9 1.488625715831921 1.488625715957738 1.25816E-10 

1.0 1.553481533942765 1.553481534081842 1.39076E-10 

 

Table 1 shows the accuracy of the proposed method; however, it was not possible 

to compare the results of this method with other existing methods because recently 

developed methods in the literature have order p > 3. 

Example 2: Consider the system of ODEs, 

𝑦1'' =
−𝑦1
𝑟
,  𝑦1(0) = 1,  𝑦1

′(0) = 0, 

𝑦2'' =
−𝑦2
𝑟
,  𝑦2(0) = 1,  𝑦2

′(0) = 0, 

𝑟 = √𝑦1
2 + 𝑦2

2, 𝑥 ∈ [0,1]. 

This stiff problem in Example 2 was solved by Okuonghae and Ozobokeme (2024). 

Table 2 shows the accuracy of the new method.  

Table 2: The solution components (Sol. Comp.), exact, numerical solution and the absolute 

error for Example 2 with h = 0.003125 and p = 3. 

   X Exact Solution Numerical solution of 

the new method 

Maximum 

Absolute Error  

0.1 9.953126920352170E-1 9.946873279439612E-1 6.25364E-4 

0.2 9.794409517155484E-1 9.806839668301461E-1 1.24301E-3 

0.3 9.544083252577275E-1 9.562565371015926E-1 1.84821E-3 

0.4 9.198395662993789E-1 9.222744736527696E-1 2.43490E-3 

0.5 8.760800744531020E-1 8.790773140286808E-1 2.99723E-3 

0.6 8.235670800964600E-1 8.270966699692076E-1 3.52958E-3 

0.7 7.628252757105762E-1 7.668519148872761E-1 4.02663E-3 

0.8 6.944615733263037E-1 6.989449944613964E-1 4.48342E-3 

0.9 6.191590404598302E-1 6.240544121934203E-1 4.89537E-3 

1.0 5.376700751278498E-1 5.429284500258345E-1 5.25837E-3 
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3.2 Discussion  

The results in Table 2 highlight the accuracy of the new method, but also reveal 

that numerical accuracy degrades during computation for several reasons. For stiff 

ordinary differential equations (ODEs), low-order methods can become unstable 

or inefficient, necessitating techniques with larger stability intervals. Additionally, 

a constant step size may not be suitable, as a step size that is too large can lead to 

missed significant events and compounding inaccuracies. Moreover, 

computations involving floating-point arithmetic can accumulate round-off 

errors, particularly in iterative methods, where small errors may amplify and 

propagate, further affecting the results. 

 

4. CONCLUSION 

In conclusion, our examination of the proposed method reveals its notable 

performance advantages when applied to mildly stiff ordinary differential 

equations (ODEs). The proposed method demonstrates efficiency and accuracy, 

effectively handling the complexities of this specific class of problems. Its ability 

to provide reliable solutions with a manageable computational cost makes it a 

strong candidate for practitioners seeking to tackle mildly stiff ODEs in various 

applications. 
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