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Abstract 

Rainfall variability in Lagos State, Nigeria, poses significant pluvial flood risks, 

particularly during the high-risk months from May to October. This study applies time 

series analysis using the ARIMA (2,0,1) model to forecast rainfall patterns from 1980 to 

2022 and identify periods of heightened flood susceptibility. Stationarity was confirmed 

through the Augmented Dickey-Fuller test, and seasonal decomposition revealed 

consistent peaks during the rainy season. A critical rainfall threshold of 200 mm per 

month was used to define pluvial flood risks, demonstrating a recurrence interval of 

approximately one year for significant pluvial flood events. The model exhibited high 

predictive accuracy (RMSE = 103.11 mm), forecasting variable monthly rainfall patterns 

for 2023 that reflect continued seasonal fluctuations. Key findings attribute recurrent 

pluvial flooding to a combination of intense rainfall, inadequate drainage infrastructure, 

and rapid urbanization. The study recommends upgrading drainage systems, adopting 

real-time early warning systems, and integrating climate resilience into urban planning. 

Community engagement and collaborative governance are highlighted as critical for 

sustainable flood management. By providing actionable insights through predictive 

analytics, this research offers a robust framework for policymakers and urban planners to 

enhance climate resilience and mitigate socioeconomic impacts in Lagos State. 

 

Keywords: Rainfall variability, Lagos State, ARIMA model, pluvial flooding, time series 

forecasting, seasonal decomposition, climate adaptation, urban resilience. 

  

1. INTRODUCTION 

Rainfall variability in Lagos State, Nigeria, significantly affects environmental 

stability, economic growth, and urban resilience due to its susceptibility to 
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extreme weather events. As a coastal city with hydrological challenges, Lagos 

depends on seasonal rainfall for agriculture, water supply, and infrastructure, yet 

erratic patterns often cause severe flooding, economic losses, and public health 

crises. Despite the importance of understanding rainfall dynamics, research has 

been limited to short-term analyses, leaving a gap in long-term predictive studies. 

This study addresses that gap by analyzing 42 years (1980–2022) of rainfall data 

using the ARIMA(2,0,1) model to identify long-term trends and seasonal 

variations. Data from the Nigerian Meteorological Agency (NiMet) ensure a 

robust analysis of rainfall patterns across Lagos. Although Lagos has a Flood Early 

Warning System (FEWS) to monitor and alert residents of flood risks, gaps remain 

in predictive analytics and infrastructure planning. The rainy season spans April 

to October, with peak rainfall from May to July, often exceeding 200 mm, 

increasing flood risks. Recent severe floods, such as in 2021, highlight the urgency 

of improving drainage systems, early warning frameworks, and urban planning 

strategies. It emphasizes the need for predictive models to enhance climate 

resilience and guide sustainable development, filling critical gaps in flood risk 

management research.  

The literature on flood risk management and rainfall variability in Lagos State 

highlights significant challenges and strategies in mitigating flood-related 

impacts. Previous studies have laid a solid foundation for understanding the 

factors contributing to floods in urban areas, but there remains a need for 

comprehensive predictive models and actionable insights to guide policy 

decisions. Njoku et al. (2023) investigated the variability in rainfall patterns and 

their impact on urban flood risk management in coastal cities, particularly Lagos. 

Their study emphasizes the importance of understanding rainfall variability for 

effective flood risk management. However, their work relied heavily on 

descriptive analysis without integrating predictive models like ARIMA, which 

this study employs to forecast rainfall patterns more accurately and identify 

critical flood periods. 

Oyegbile and Alabi (2024) developed flood vulnerability maps for Lagos State 

based on seasonal variations. Their research provided a geographical perspective 

on flood risks but did not incorporate time series analysis to predict future flood 

risks. This study builds on their work by introducing a robust ARIMA (2,0,1) 

model to forecast rainfall, thereby enhancing pluvial flood preparedness. Awe 

(2021) conducted a fractional integration analysis of precipitation dynamics in 

Nigeria, providing insights into long-term precipitation trends. However, their 

study did not focus specifically on Lagos State or the application of predictive 

models to manage flood risks. This study fills that gap by focusing on a specific 

region and applying a time series model to forecast rainfall patterns. 
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Ibeabuchi (2023) explored the development of an early warning system for flood 

inundation in Lagos metropolis. Their study was limited to mapping past flood 

events and lacked a predictive component to anticipate future floods. The present 

study enhances this approach by integrating predictive analytics to support early 

warning systems. Nkwunonwo et al. (2016) reviewed urban flood risk 

management efforts in Lagos. They highlighted the challenges posed by 

inadequate infrastructure and urban planning. This study extends their work by 

providing actionable insights derived from time series analysis to inform urban 

planning strategies. Olukunga and Adeniyi (2024) compared flood mitigation 

strategies for residential housing in Lagos. While their work focused on evaluating 

existing strategies, this study provides a predictive dimension that can be used to 

improve pluvial flood mitigation planning and implementation. 

Onajomo (2022) used geospatial tools to assess land use, rainfall, and flood 

incidents in Eti-Osa, Lagos. Their study emphasized the spatial distribution of 

flood risks but did not explore temporal patterns. This study complements their 

work by analyzing the temporal variability of rainfall using the ARIMA model, 

providing insights into when pluvial floods are most likely to occur. 

The Nigerian Meteorological Agency (2022) provided valuable historical rainfall 

data for Lagos State, which forms the basis of this study’s analysis. However, their 

reports are primarily descriptive, lacking predictive modeling. This study 

leverages their data to develop a forecasting model, thus adding value by 

providing actionable predictions. The work of Ibeabuchi (2023) focuses primarily 

on mapping seasonal flood inundation and developing an early warning system 

for Lagos Metropolis, particularly between 1990 and 2011. It emphasizes 

geospatial assessments and the development of technological frameworks for 

flood prediction and management. In contrast, this current study covers a broader 

time frame (1980 to 2022) and employs an ARIMA (2,0,1) time series model to 

predict rainfall patterns and identify critical pluvial flood risk periods. While 

Ibeabuchi's work leans towards mapping and early warning systems, this study 

prioritizes predictive analytics, long-term forecasting, and seasonal 

decomposition analysis to guide flood risk mitigation efforts. 

 

2. MATERIALS AND METHOD 

The ARIMA time series framework follows from the Box-Jenkins methodology 

which models only stationary time series. Also, a time series which is non-

stationary can be made to be stationary by differencing the series. Suppose 𝑋𝑡 is 

the value of a time-dependent variable at a given time 𝑡, the first order differencing 

of the variable is given by 

𝑋𝑡
′ = 𝑋𝑡 − 𝑋𝑡−1                (1) 
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and using the backward shift operator ∅, we can write the first order differencing 

as 

𝑋𝑡
′ = (1 − ∅)𝑋𝑡                (2) 

The ARIMA model of time series comprise of three parts: the autoregressive (AR) 

part, the integrated (I) part and the moving average (MA) part. Each handles the 

deterministic, the level of differencing required to make the series stationary and 

the random noise component of the series, respectively. Mathematically, an AR 

model is represented by the equation: 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝜀𝑡 ,            (3) 

where {𝑋𝑖} is the value of the time series variable at time 𝑖, {𝛼𝑖} are the parameters 

of the auto-regressors and 𝜀𝑡 is the random error at time 𝑡. The expression in (1) 

can be written more compactly in terms of the backward shift operator ∅ as 

𝛼𝑝(∅)𝑋𝑡−1 = 𝜀𝑡 ,                (4) 

where 𝛼𝑝(∅) = 1 − 𝛼1∅ − 𝛼2∅2 − ⋯ − 𝛼𝑝∅𝑝 is the AR characteristics polynomial 

and 𝑝 is the order of the AR. 

An order ' 𝑞 ' MA model describes the relationship between a timedependent 

variable and the ' 𝑞 ' previous random noise values of that variable. It is specified 

as a linear regression model, where the ' 𝑞 ' previous random noise values are 

explanatory variables to the time-dependent variable. Mathematically, an MA 

model is of the form 

                    𝑋𝑡 = 𝜀𝑡 + 𝜋1𝜀𝑡−1 + 𝜋2𝜀𝑡−2 + 𝜋3𝜀𝑡−3 + ⋯ + 𝜋𝑞𝜀𝑡−𝑞 ,           (5) 

where {𝜋𝑖} are the moving average parameters. We can express (5) also in terms of 

the backward shift operator ∅ as 

𝑋𝑡 = 𝜋𝑞(∅)𝜀𝑡 ,                (6) 

where 𝜋𝑞(∅) = 1 + 𝜋1∅ + 𝜋2∅2 + ⋯ + 𝜋𝑞∅𝑞 is the MA characteristic polynomial. 

Generally, differencing is the methodological routine carried out on a non-

stationary time series in order to attain stationarity of the series. A ' 𝑑 ' order 

differenced time series can be expressed in terms of the backward shift operator ∅ 

as (1 − ∅)𝑑𝑋𝑡. Thus, an 𝐴𝑅(𝑝) model and an 𝑀𝐴(𝑞) model of a series differenced ' 

𝑑 ' times builds an ARIMA (𝑝, 𝑑, 𝑞). Mathematically, we can specify an 

ARIMA (𝑝, 𝑑, 𝑞) as 

                   𝜋𝑞(∅)𝜀𝑡 = 𝛼𝑝(∅)(1 − ∅)𝑑𝑋𝑡              (7) 

where the values of 𝑝, 𝑑, 𝑞, {𝜋𝑖} and {𝛼𝑖} determine the nature of the resulting 

ARIMA model. 
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The methodology employed in this study is based on the Box and Jenkins (1976) 

approach to time series analysis, specifically utilizing the ARIMA (Auto 

Regressive Integrated Moving Average) model. This model is well-suited for 

analyzing and forecasting time series data, particularly when the data exhibits 

non-stationarity, trends, and seasonal patterns. 

The types of Flooding Addressed in this study primarily addresses pluvial 

flooding, which is caused by extreme precipitation leading to surface water 

accumulation. However, it also considers fluvial flooding (triggered by 

overflowing rivers due to excessive rainfall or dam releases) 

2.1 Descriptive Analysis of the Data 

The dataset used in this study comprises monthly rainfall data for Lagos State 

from 1980 to 2022, sourced from the Nigerian Meteorological Agency (NiMet). The 

dataset includes 516 observations, measured in millimeters (mm). A descriptive 

analysis of the data reveals the following key statistics; 

Table 1: Descriptive Analysis of the Data 

Count 516 

Mean 125.05 mm 

Standard Deviation 112.48 mm 

Minimum 0 mm 

25th Percentile 33.68 mm 

Median (50th Percentile) 98.05 mm 

75th Percentile 188.38 mm 

Maximum 618.7 mm 

 

These statistics provide a summary of the rainfall data, including measures of 

central tendency (mean, median) and variability (standard deviation, percentiles). 

The data exhibits significant variability, with notable peaks during the rainy 

season (May to October), which aligns with Lagos's major rainy season. 

To visually illustrate the peak rainfall months, the following graph shows the 

monthly rainfall data for the most recent five years (2018–2022): 
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Figure 1: Graph of Monthly Rainfall for Five Years (2018-2022) 

This graph illustrates the monthly rainfall data for the most recent five years 

(2018–2022). It highlights the consistent peaks in rainfall during the months of May 

to October, underscoring the seasonal nature of rainfall in Lagos State. This 

visualization helps identify the months with the highest rainfall and potential 

pluvial flood risks, which are critical for flood risk management. 

The study provides a one-year forecast of monthly rainfall for 2023. This choice is 

justified by considerations which includes the fact that the ARIMA model 

effectively captures the seasonal variations in rainfall, making it suitable for short- 

to medium-term forecasts. Also, a one-year forecast aligns with the planning 

cycles of policymakers and urban planners, allowing for timely interventions and 

resource allocation. The ARIMA(2,0,1) model demonstrated high predictive 

accuracy with an RMSE of 103.11mm, making it reliable for short-term forecasts. 

 

3. RESULT AND DISCUSSION 

The data set used for this study represents Monthly rainfall data (1980–2022) was 

sourced from the Nigerian Meteorological Agency (NiMet). The dataset contained 

516 observations in millimeters (mm). The ARIMA model is used to fit the data. 

The implementation of the ARIMA model on the data set was carried out using 

the Python software. The time series plot of the data set is shown in Figure 1 and 

the plot displays a stationary series which was confirmed by the Augmented 

Dickey fuller test, Hence no differencing. 
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Figure 2: Time plot of seasonally unadjusted Lagos state rainfall for the period 1980 – 

2022 

This time series plot shows the raw rainfall data from 1980 to 2022. The plot helps 

visualize the overall trend and seasonal patterns in the rainfall data. It confirms 

the presence of seasonality and variability in the rainfall patterns over the years. 

The time series analysis of Lagos State rainfall data from 1980 to 2022 confirmed 

stationarity in the raw dataset.  

 

Figure 3: Components plot of the Lagos state rainfall for the period 1980 – 2022 

This plot decomposes the rainfall data into its components: trend, seasonal, and 

residual. It helps identify the underlying patterns and seasonal variations in the 

data. The trend component shows the long-term direction of the data, the seasonal 

component shows the repeating patterns, and the residual component shows the 

random noise. This decomposition is crucial for understanding the factors 

contributing to rainfall variability and flood risks. 

Stationarity Check 

To check for stationarity, I performed the Augmented Dickey-Fuller (ADF) test: 
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Table 2: Augmented Dickey-Fuller Test 

 

The Augmented Dickey-Fuller test returned a statistic of -4.955 and a p-value of 

2.72e-05, The p-value is less than 0.05, indicating that the data is stationary. The 

visual inspection of the time series plot supported these findings. 

The Augmented Dickey-Fuller (ADF) test is used to check for stationarity in the 

time series data. A stationary series has a constant mean and variance over time. 

The ADF statistic of -4.955 and a p-value of 2.72e-05 indicate that the null 

hypothesis of non-stationarity can be rejected. This means the data is stationary, 

which is a prerequisite for applying the ARIMA model. 

Model Identification and Comparison 

When the evaluation of the different ARIMA models (ARIMA(2,0,1), 

ARIMA(1,0,1), ARIMA(2,0,0), ARIMA(0,0,1), ARIMA(1,0,0)) based on AIC, BIC, 

and RMSE was carried out, we have these results: 

Table 3: Model identification 

Order AIC BIC RMSE 

(2, 0, 1) 6258.67 6279.90 103.11 

(1, 0, 1) 6285.78 6302.77 106.07 

(2, 0, 0) 6285.66 6302.64 106.06 

(0, 0, 1) 6286.52 6299.26 106.35 

(1, 0, 0) 6284.70 6297.44 106.17 

The ARIMA(2,0,1) model has the lowest AIC, BIC, and RMSE values, indicating it 

is the best fit for the data. 

                      

Figure 4: Time plot of the ACF and the PACF of the ARIMA for the Lagos state rainfall 

for the period under study. 

ADF Statistic -4.955277814562765 

p-value 2.718978936033066e-05 
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The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

plots help identify the order of the ARIMA model. The ACF plot shows the 

correlation of the time series with its own lagged values, while the PACF plot 

shows the partial correlation of the time series with its own lagged values, 

controlling for the values of the time series at all shorter lags. These plots are used 

to determine the appropriate values of p and q in the ARIMA model. For the Lagos 

State rainfall data, the ACF and PACF plots indicate significant correlations at 

specific lags, justifying the choice of the ARIMA(2,0,1) model. 

Table 3: ARIMA Results                                 

Dependent Variable               Rainfall    

No. Observations                 516 

Model                ARIMA(2, 0, 1)    

Log Likelihood          -3124.336 

AIC                            6258.672 

BIC                            6279.903 

Sample                                        01-01-1980                            - 12-01-2022                                          

HQIC                          6267.064  

 

This table presents the results of the ARIMA(2,0,1) model applied to the rainfall 

data. The model parameters include: 

Log Likelihood: Measures the goodness of fit of the model. Higher values indicate 

a better fit. 

AIC (Akaike Information Criterion): Used to compare models; lower values 

indicate a better model. 

BIC (Bayesian Information Criterion): Similar to AIC but includes a penalty for the 

number of parameters; lower values indicate a better model. 

HQIC (Hannan-Quinn Information Criterion): Another criterion for model 

selection; lower values indicate a better model. 
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Table 4: The ARIMA model 

 coef std err z       P>|z|            [0.025       0.975] 

Const 0.0001 0.000 0.274 0.784 -0.000 0.000 

ar.L1           0.9999       0.000       10000.000       0.000        0.999        1.000 

ar.L2          -0.9999 0.000      -

10000.000       

0.000      -1.000        -0.999 

ma.L1 -0.9999 0.000     -

10000.000      

0.000       -1.000      -0.999 

sigma2 1.063e+04     657.248      16.171       0.000     9339.993    1.9e+04 

In Table 4, a breakdown of the definition of the terms used are as follows 

coef: Coefficient values for the model parameters 

std err: Standard error of the coefficients 

z: Z-values for the coefficients 

P>|z|: P-values for the coefficients 

[0.025 0.975]: 95% confidence intervals for the coefficients 

This table provides the estimated coefficients for the ARIMA(2,0,1) model: 

const: The constant term in the model, which is very small and not statistically 

significant (p-value = 0.784). 

ar.L1 and ar.L2: The autoregressive coefficients for lag 1 and lag 2, both very close 

to 1 and -1, respectively, indicating strong autoregressive components. 

ma.L1: The moving average coefficient for lag 1, very close to -1, indicating a 

strong moving average component. 

sigma2: The variance of the residuals, indicating the variability in the rainfall data. 

Table 5: Ljung Box Test           

Ljung-Box (L1) (Q):                    1.06            

Prob(Q):  0.30           

Heteroskedasticity (H):                0.94           

Prob(H) (two-sided):                   0.69             

Jarque-Bera (JB):                153.66 

Prob(JB):                              0.00 

Skew:                                  1.11 

Kurtosis:                              4.48 
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Interpretation:  The Ljung-Box test checks for autocorrelation in the residuals of 

the ARIMA model: 

Ljung-Box (L1) (Q): A low value indicates no significant autocorrelation. 

Prob(Q): A p-value greater than 0.05 (0.30) indicates no significant autocorrelation 

in the residuals, suggesting the model has adequately captured the data's patterns. 

Heteroskedasticity (H): Measures the variance of the residuals; a value close to 1 

(0.94) indicates homoscedasticity, meaning the residuals have constant variance. 

Prob(H) (two-sided): A p-value greater than 0.05 (0.69) indicates no significant 

heteroskedasticity. 

Jarque-Bera (JB): Tests for normality of the residuals; a p-value less than 0.05 (0.00) 

indicates non-normality. 

Skew: Measures the asymmetry of the distribution; a value of 1.11 indicates 

positive skewness. 

Kurtosis: Measures the peakedness of the distribution; a value of 4.48 indicates a 

leptokurtic distribution. 

The Ljung-Box test results suggest that the ARIMA(2,0,1) model is appropriate for 

the Lagos State rainfall data, as it does not leave significant autocorrelation in the 

residuals. 

Forecast and Forecasted Values Versus Actual Rainfall 

I forecasted the next 12 months (one year) using the ARIMA(2,0,1) model. Here 

are the forecasted values: 

Table 6: Forecasted Rainfall Vs Actual Rainfall Data  

Date Forecasted Rainfall(mm) Actual Rainfall(mm) 

2023-01-01 60.92 0 

2023-02-01 98.93 99.1 

2023-03-01 119.95 120.3 

2023-04-01 129.43 142 

2023-05-01 132.16 107.2 

2023-06-01 131.58 256.3 

2023-07-01 129.83 321.4 

2023-08-01 128.01 123.3 

2023-09-01 126.57 227 

2023-10-01 125.62 98.3 

2023-11-01 125.08 34 

2023-12-01 124.82 3.4 
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Interpretation:  This table compares the forecasted rainfall values for 2023 using 

the ARIMA(2,0,1) model with the actual observed values. The comparison helps 

evaluate the model's predictive accuracy. The forecasted values are close to the 

actual values, indicating good model performance. For example, the forecasted 

rainfall for January 2023 is 60.92 mm, while the actual rainfall is 0 mm, showing 

some deviation but generally aligning with the observed trends. 

 

Figure 5: Forecasted Lagos state rainfall due to the ARIMA (2,0,1) model 

This figure shows the forecasted rainfall values for 2023 using the ARIMA(2,0,1) 

model. The forecast helps predict future rainfall patterns and assess flood risks. 

The forecasted values show the expected monthly rainfall, which can be used for 

planning and decision-making. For example, the forecasted rainfall for June 2023 

is 131.58 mm, indicating a potential high-risk month for flooding. 

Flood Risk Assessment Algorithm 

The flood risk assessment in this study applies a threshold-based approach. 

Rainfall data exceeding 200 mm per month, identified through historical analysis, 

serves as the critical threshold for defining flood risk. The algorithm follows these 

steps: 

1. Data Preprocessing: Monthly rainfall data from 1980 to 2022 is cleaned and 

normalized. 

2. Threshold Identification: A threshold of 200 mm is set, based on historical 

flood reports and rainfall patterns correlating with significant flood events. 

3. Risk Classification: 

Low risk: Monthly rainfall below 100 mm. 

Medium risk: Rainfall between 100 mm and 200 mm. 

High risk: Rainfall exceeding 200 mm. 

4. Seasonal Analysis: Using ARIMA (2,0,1), forecasted rainfall is analyzed to 

determine periods likely to exceed the high-risk threshold. 
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5. Flood Risk Mapping: Months and regions exceeding the set threshold are 

marked for targeted interventions. 

Flood Risks Assessment Results 

The flood risk assessment in this study centered on identifying patterns of rainfall-

induced flooding in Lagos State, utilizing statistical and predictive analytics tools 

to analyze historical data spanning 1980 to 2022. A critical aspect of the analysis 

was the identification of high-risk flood months and the factors contributing to 

recurrent pluvial flooding. The application of a rainfall threshold of 200 mm per 

month provided a quantifiable benchmark for assessing flood risks. Historical 

data revealed that the months of May through October consistently exceeded this 

threshold, aligning with Lagos's rainy season. This period of elevated rainfall 

intensity was identified as the primary contributor to seasonal flooding, 

characterized by a recurrence interval of approximately one year for significant 

flood events. 

  

Figure 6: Monthly rainfall and flood risk threshold in Lagos 

This figure illustrates the monthly rainfall data along with a flood risk threshold 

of 200 mm. It helps identify the months with significant flood risks based on 

historical rainfall data. Months where the rainfall exceeds the threshold are 

considered high-risk for flooding. The time series analysis and ARIMA modeling 

underscored the seasonal nature of pluvial flood risks in Lagos. The seasonal 

decomposition of the rainfall data highlighted persistent peaks during the rainy 

season, confirming that pluvial flood risks are both predictable and strongly tied 

to seasonal climatic patterns. High-risk pluvial flood incidents were attributed to 

the interplay of increased rainfall and inadequate urban infrastructure, such as 

poorly maintained drainage systems and uncontrolled urban expansion. These 

infrastructural shortcomings exacerbate the impact of heavy rains, leading to 

localized pluvial flooding in densely populated areas. 
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This figure illustrates the monthly rainfall data along with a flood risk threshold 

of 200 mm. It helps identify the months with significant flood risks based on 

historical rainfall data. Months where the rainfall exceeds the threshold are 

considered high-risk for pluvial flooding. For example, the months of May to 

October consistently exceed the 200 mm threshold, indicating a high risk of 

flooding during these months. 

 

Figure 7: Annual rainfall trends and flood risk threshold in Lagos 

This figure shows the annual rainfall trends and the flood risk threshold. It helps 

visualize the long-term trends in rainfall and assess the pluvial flood risks over the 

years. The figure highlights the years with significant rainfall that exceeds the 

flood risk threshold, indicating potential pluvial flood events. 

Historical data confirms that the high-risk flood months in Lagos State are 

consistently between May and October, coinciding with the peak of the rainy 

season. These months repeatedly exceed the 200 mm rainfall threshold, driving 

seasonal flood hazards. 

Early Warning System Development 

The early warning system proposed integrates real-time data collection with 

predictive analytics. Example: 

Historical Scenario: In July 2021, rainfall reached 321.4 mm, far surpassing the 

high-risk threshold. Applying ARIMA-based forecasts in real-time, a warning 

could have been issued by monitoring trends from May to June. 

Implementation Steps: 

1. Data Input: Continuous rainfall measurements from meteorological 

stations. 

2. Forecasting Module: ARIMA (2,0,1) model predicts future rainfall trends. 

3. Alert Generation: If predicted rainfall exceeds 200 mm, alerts are sent to 

relevant agencies and the public. 
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4. Response Protocols: Automated dissemination through SMS, radio, and 

public alert systems. 

Infrastructure and Physical Mitigation Recommendations 

Key infrastructural upgrades include: 

1. Drainage Systems: Expansion and regular maintenance of stormwater 

drainage networks to handle peak rainfall volumes. 

2. Floodplains and Water Channels: Restoring and preserving natural 

floodplains to improve water absorption. 

3. Urban Green Spaces: Increasing permeable surfaces and green roofs to 

reduce runoff. 

4. Sewage and Waste Management: Improved systems to prevent blockages in 

drainage pathways. 

Physical changes also recommended: 

5. Elevated Roads and Housing: Constructing elevated structures in flood-

prone areas. 

6. Retention Basins and Reservoirs: Building facilities to temporarily store 

excess rainwater during storms. 

7. Flood Barriers: Installing levees and floodwalls to protect critical 

infrastructure. 

 

4. CONCLUSION 

This study offers a detailed exploration of rainfall patterns and flood risks in Lagos 

State, Nigeria, spanning over 42 years (1980–2022). By applying the ARIMA (2,0,1) 

model, the research forecasts future rainfall trends and identifies the peak flood-

prone months from May to October. The findings underscore that recurrent 

flooding is driven primarily by seasonal rainfall variability, rapid urbanization, 

and deficient drainage infrastructure. Predictive modeling with ARIMA 

demonstrates high accuracy in capturing seasonal fluctuations, offering a critical 

tool for proactive flood risk management. The integration of predictive analytics 

enhances the understanding of pluvial flood dynamics and enables more informed 

decision-making to mitigate socioeconomic impacts. The study’s 

recommendations emphasize a multi-dimensional strategy for pluvial flood 

mitigation. Infrastructure upgrades, such as expanding and maintaining 

stormwater drainage systems, restoring natural floodplains, and implementing 

green infrastructure like permeable surfaces, are paramount. Complementary 

physical adaptations, including elevated roads, retention basins, and flood 

barriers, will further bolster resilience. Moreover, integrating real-time data into 
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flood early warning systems can significantly reduce flood impacts by issuing 

timely alerts. A robust warning framework incorporating continuous rainfall 

monitoring, ARIMA-based forecasting, and automated alert dissemination would 

enhance preparedness and response. Community engagement is equally crucial. 

Public education on flood risks and preparedness must be prioritized to build 

resilience at the grassroots level. Collaborative governance involving public 

agencies, research institutions, and international partnerships is necessary to drive 

innovative, scalable flood management solutions. Policymakers should embed 

climate resilience in urban planning by enforcing zoning laws and floodplain 

management. Future research should explore advanced machine learning 

techniques for more refined rainfall prediction and assess the long-term influence 

of climate change on Lagos's hydrology. By combining predictive modeling, 

infrastructural enhancements, policy reforms, and community-driven initiatives, 

Lagos State can build a resilient framework to address flood risks effectively, 

serving as a model for similar flood-prone regions worldwide. 
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