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Abstract 

This contribution critically expands the concept of delta-differentiated systems with impulsive 

discontinuities across unbounded delay into quantum stochastic calculus, specifically following 

the framework established by Hudson and Parthasarathy within a designated locally convex 

space. Our main contribution is demonstrating the constructive resolvability of delta-

differentiated trajectories under impulsive discontinuities for quantum delta-differentiated 

systems with impulsive discontinuities across hybrid-chronological scaffolds involving 

unbounded waiting time. By establishing a suitable phase space and applying essential 

constraints, we utilize the asymmetric version of Leray-Schauder theory, when interlaced with 

Arzelà’s equicontinuous compactification wish guarantees the admissibility of weak solutions. 

 

Keywords: Delta-differentiated systems; unbounded waiting time; phase space; asymmetric 

version of Leray-Schauder Theorem. 

 

1. INTRODUCTION 

The study of delta-differentiated systems across hybrid-chronological scaffolds, 

which was initially created to merge continuous and discrete systems, has 

emerged as a vital area in mathematics [Martins and Allan (2001, 2003)]. This 

framework offers a robust approach for analyzing dynamic systems that evolve 

over diverse time domains, including differential equations and difference 

equations as specific instances. By serving as a bridge between continuous and 

discrete analyses, this theory allows for a more generalized understanding of 

complex dynamic behaviors, making it applicable in various fields. 

The introduction of quantum calculus, or q-calculus, to the analysis of delta-

differentiated systems across hybrid-chronological scaffolds has ushered in new 
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research opportunities (Abimbola and Adedamola, 2023). Unlike traditional 

calculus, quantum calculus negates the reliance on limits and derivatives, 

providing alternative methods for investigating systems that evolve on quantum 

time scales (Ayoola, 2018; Ogundiran, 2013). This form of calculus proves 

particularly effective in modeling phenomena in disciplines such as quantum 

mechanics, finance, and other areas where time is perceived in a non-traditional 

manner, as noted in the work of Martins and Allan (2001 & 2003). 

Moreover, the exploration of impulsive dynamic equations enhances the 

versatility of these models by incorporating sudden changes, or impulses, at 

discrete intervals (Lakshmikantham et al., 1989, Benchora et al., 2006, Abimbola, 

2021). Such impulses signify abrupt transitions in the state of a system, making 

these models invaluable in areas where immediate changes are crucial, including 

control theory, biological dynamics, and engineering applications. By 

accommodating rapid state changes, impulsive equations often provide a more 

accurate representation of real-world phenomena compared to conventional 

dynamic models. 

A particularly intriguing and complex extension of these models arises when 

considering infinite (unbounded) delay where the future state of the system is 

reliant on its entire historical trajectory rather than solely its present state. The 

inclusion of infinite delay in impulsive systems introduces several significant 

implications that enhance both their complexity and realism. One of the most 

notable effects is the dependency of future states on the entire historical trajectory 

of the system. This means that the system’s future behavior is influenced not just 

by its current state but also by its past states, leading to a more intricate dynamic 

landscape. 

This historical influence creates memory effects, where the system retains 

information about previous states, which can profoundly affect future behavior. 

As a result, systems with infinite delay may exhibit complex dynamics, such as 

oscillations, chaotic behavior, or stability transitions that are not present in simpler 

models. Such dynamics require a deeper understanding of how historical events 

interplay with current conditions, making the analysis more challenging. 

In terms of stability analysis, the presence of infinite delay complicates the 

assessment of system stability. Traditional methods may no longer suffice; instead, 

new analytical approaches must be developed to adequately account for the broad 

range of influences stemming from the system's history. This complexity is further 

reflected in the modeling of real-world processes. Many phenomena, such as 

economic trends and biological population dynamics, inherently involve historical 

influences. Accurate modeling of these systems necessitates the consideration of 

infinite delay to capture their true behavior. 
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The mathematical formulation of governing equations also becomes more intricate 

when infinite delay is involved. Advanced techniques from functional analysis, 

differential equations, and operator theory may be required to derive and solve 

these equations effectively. As a result, the design of control strategies for systems 

with infinite delay becomes increasingly difficult. Control mechanisms must 

account for the entire history of the system, adding layers of complexity to 

feedback and decision-making processes. Moreover, the presence of infinite delay 

can lead to non-unique solutions to the governing equations, complicating 

predictions and making it challenging to determine the system's exact future 

behavior (Youshyaki et al., 1991). This non-uniqueness can pose significant 

problems in applications where precise outcomes are crucial for effective decision-

making. Simulating systems with infinite delay also presents unique challenges. 

Conventional numerical techniques may not be directly applicable, necessitating 

the development of specialized methods to accurately capture the complexities 

introduced by the infinite historical influence. Infinite delay models are critical for 

analyzing processes where past influences persist indefinitely, evident in fields 

such as population dynamics, neural networks (Abimbola, 2018), and economic 

models exhibiting long-term memory effects. The integration of both impulsive 

dynamics and infinite delay into quantum time scales significantly complicates the 

equations yet enriches the framework for comprehending systems influenced by 

historical states and subject to sudden changes. 

By tackling these complexities, our research sheds light on a range of real-world 

scenarios where quantum behavior, impulsive alterations, and memory effects are 

pivotal. This includes quantum systems, biological frameworks with immediate 

disruptions, and economic models where decisions hinge on both instantaneous 

events and historical trends. The advancement of robust mathematical tools for 

analyzing these intricate systems could greatly enhance our theoretical 

understanding and practical modeling of complex dynamic systems across 

multiple scientific and engineering domains. 

In 1984, Hudson and Parthasarathy introduced an operator-theoretic extension of 

classical stochastic calculus, now recognized as quantum stochastic calculus. This 

theory lays out an integration framework within Boson Fock space, integrating 

four essential processes: creation, annihilation, preservation (or gauge), and 

temporal processes, represented by A⁺, Aᵗ, Λ, and t, respectively. These processes 

are intimately connected to established concepts in quantum field theory. A 

notable feature of their theory is the Wiener-Itô isomorphism, linking the L²-space 

of Wiener measure with Boson Fock space, where Brownian motion can be 

represented as a combination of creation and annihilation processes. In 2007, 

Ekhaguere exployed  the topological solution of some non-commutative quantum 

stochastic differential equations 
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This work pursue the establishment of solutions to  quantum delta-differentiated 

systems with impulsive discontinuities across hybrid-chronological scaffolds also 

known as ‘quantum dynamic equation on time scale with infinite delay’ nestled 

within the Fock-space filtrations of Hudson Parthasarathy’s quantum stochastic 

integral-dynamics. The following structure is employed: In Section 2, we present 

the foundational structures and definitions that will underpin our discussion. In 

Section 3, we establish solutions to quantum delta-differentiated systems with 

impulsive discontinuities across hybrid-chronological scaffolds. 

 

2. MATERIALS AND METHOD 

Fundamental Structure 

Considering the exponential vectors 𝜂 = c ⊗ 𝑒 (𝛼) and 𝜉 = 𝑑  ⊗  𝑒(𝛽) in D ⊗ E 

we define the following: 

(i) Adapted weakly absolutely continuous processes:  

The space Pad(J, B̃ )wac consists of mappings y : J → B̃   

where  y  is adapted and weakly absolutely continuous. 

(ii)   H  : J  → Hwac(B̃) 

H(t, y)(η, ξ) = ⟨η, Hα,β(t, y)ξ⟩ 

Here, Hα,β = H, and Hwac refers to the space of weakly absolutely continuous 

processes within B̃. 

(iii) Seminorm definition on Pad(J, B̃)wac, is given by 

∥Φ∥h,ηξ = sup{∥Φ(t)∥ηξ, t ∈ J},                    (1) 

and locally convex armature that is complete with structure generated by this 

seminorm is denoted by Hwac(B̃). 

(iv) Complex valued space: For any pair η, ξ  𝑖𝑛 𝐷 ⊗  𝐸, we introduce 

the domain of complex-valued numbers corresponding to (ii) as: 

  Pad(I, B̃)wac,ηξ  = {⟨η, Φ(.)ξ⟩ : Φ ∈ Pad(J, B̃)wac} 

(v)   A time scale T is a closed subset of the real line that is not empty.  For each  

t  in T and any arbitrary pair η, ξ  𝑖𝑛 𝐷 ⊗  𝐸 , we name the backward shift 

operator: 

ρ : T → T by ρ(t) : sup[s ∈ T : s < t] 

Similarly, the forward shift operator is defined as: 

σ : T → T by σ(t) : inf[s ∈ T : s > t] 
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Phase Space 

A phase space of a dynamical system is a theoretical construct where 

each state of the system is uniquely mapped to a spatial point.  Let E ⊆ 

Hwac(B̃). The phase space A for systems with infinite delay is a linear 

space equipped with a seminorm |.|A consisting of functions mapping  

(-∞, 0] into A.  For a function y : (-∞, 𝜃] → E and for any t <  𝜃, we define 

yt : (−∞, 0] → E 

by  

yt(δ) = y(t + δ),    −∞ <   𝛿 ≤ 0 

and called the t−segment of y, the t−section of y or the history of y up to 

t.  

Consider A as the state space, we make the following assumption on A 

H1  If y : (−∞ , ρ + d) → E such that d > 0,  𝑦 ⊂ 𝐴 and y is continuous on  

[ρ, ρ + d], then it follows that for each t ∈ [ρ, ρ + d] the listed conditions hold.  

(i) yt ⊂ A 

(ii) |yt|E ≤ N |yt|A where N is a constant 

(iii) |𝑦𝑡|𝐴  ≤ 𝐾(t - ρ) sup[ y(s)]E  : ρ ≤ s ≤ t] + K, N  : [0,∞),  K is 

continuous and N is bounded locally and   both are independent 

of y 

H2  For a function y  in (H1), yt is an A−valued continuous function 

for t ∈ [ρ, ρ + d). 

H3 The space A is complete 

H4 If [ϕn] is a Cauchy sequence in A with respect to the seminorm and if 

[ϕn(δ)] converges to a function ϕ(δ) compactly on (−∞, 0], then ϕ ∈ A and 

|ϕn − ϕ|A → 0 as n → ∞. 

Now, we set a restriction on the closed subspace 

Ad = [y : (−∞, d] → E | ∃ t0, < t1 < ... < tn < td 

such that y(t−), y(t+) exist with y(tk) = y(t−), 0 ≤ k ≤ n 

y(t) = φ(t), t ≤ 0, yk ∈ C(I, E) where yk is  therestriction  of  y  to  Jk  = (tk, 

tk+1), k = 0, ..., m. 

Let the ||y||d be the seminorm in Ad defined by 

||y||d = ||y0||A + sup[|y(s)| : 0 ≤ s ≤ d], y 
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3. RESULT AND DISCUSSION 

When we expand these impulsive systems to incorporate infinite delays, the 

complexity of the model escalates significantly. In such scenarios, the future 

dynamics of the system are influenced not only by its current state but also by the 

entirety of its historical trajectory. The integration of quantum calculus, impulsive 

effects, and infinite delay creates a sophisticated mathematical framework capable 

of simulating complex real-world phenomena, where time is not uniform and the 

historical context plays a vital role in the evolution of the system. 

Here, we will derive solutions to the quantum functional dynamic equation with 

impulse on time scales subject to unbounded delay, expressed in the following 

manner: 

[Y (t) − g(t, Yt)]∆ = f (t, Yt)(η, ξ) +  ∑ 𝐼𝑘(𝑌(𝑡𝑘
−𝑛

𝑘=1  ) 𝛿(𝑡 −   𝑡𝑘) , 𝑡 𝜖( 𝕋 ∩ [0, 1]  

and Y0 = ϕ(t) ,   𝑡 𝜖 𝕋 ∩ [−∞, 0]. 

To start with, we shall consider this dynamic equation. 

Y ∆ = f (t, Y (t))(η, ξ) +  ∑ 𝐼𝑘(𝑌(𝑡𝑘
−𝑛

𝑘=1  ) 𝛿(𝑡 −  𝑡𝑘) , 𝑡 𝜖( 𝕋 ∩ [0, 1]   

Y0 = ϕ(t), ,   𝑡 𝜖 𝕋 ∩ [−∞, 0]                            (2) 

where T is a time scale which has at least finitely many right-dense points  

[0, d] ⊂ (−∞, d] ⊂ T,   f  : T × A → R is a given function, Ik ∈ C(R, R), tk  ∈ T, 

 0 = t0 < t1 < ..... < tn  < tn+1  = d,    ϕ ∈ A, Y (tk+) and Y (tk−) represent right and 

left limits with respect to the time scale, and in addition, if tk is  right-

scattered, then 

 𝑌𝑘(t+) = Y (tk) if tk is left-scattered, then 𝑌𝐾(t−) = Y (tk) 

Auxlliary Results 

“Theorem 1 (Leray-Schauder’s Theorem) (Abimbola and Ayoola, 2018) 

Let U and 𝑼  represent, respectively, the open and closed subsets of a convex set K∈ B̃ 

with 0 ∈U. Consider N: U →K as a compact, semi- continuous mapping. Then, one 

of the following conditions must hold: 

1. The equation y = Ny has at least one solution within U or 

2. There exists a point u ∈ δU where (δU is the boundary of U) such that u = 

λNu for some λ ∈ C where Reλ ∈ (0, 1) and Imλ ∈ (0, 1),” 

“Theorem 2 ( Arsela- Ascoli Theorem) (Abimbola and Ayoola, 2018) 

Let Y : J → B̃ represent  a  stochastic  process  that  satisfies the following conditions: 

(i) For any pair η, ξ ∈ D⊗E, let  K  ⊂ Ã where  F  : K  → K  is  a  compact  

map. 
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(ii) For each y ∈ Y, and f ∈ F we have ∥f (y)∥ηξ ≤ n where n < ∞. 

(iii) For every ϵ > 0 (depending on η, ξ) there exist δηξ for all x, y ∈ Y, 

d(x, y)(η, ξ) < δηξ. 

Then,   ⟨η, (f (x) − f (y))ξ⟩ < ϵ  ∀ f ∈ F, x, y ∈ Y.” 

 

Main Results 

Theorem 3  

C o n s i d e r  t h e  i m p u l s i v e  s y s t e m  o n  a  t i m e  s c a l e  𝕋 ⊆ [0, 𝑑] 

[
𝑌△(𝑡) = 𝑓(𝑡, 𝑌𝑡  ))(𝜂, 𝜉)  +  ∑ 𝐼𝑘(𝑌(𝑡𝑘

−

𝑛

𝑘=1

 ) 𝛿(𝑡 −   𝑡𝑘), 𝑡 𝜖( 𝕋 ∩ [0, 1]   

𝑌(𝑡) =  Φ(𝑡), 𝑡 𝜖 𝕋 ∩ [−∞, 0]

 

𝑤ℎ𝑒𝑟𝑒  𝑌△ 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑙𝑡𝑎 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒, 𝛿 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑟𝑎𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝑖𝑚𝑝𝑢𝑙𝑒𝑠 

 𝑎𝑡 𝑡𝑖𝑚𝑒  [𝑡𝑘]𝑘=1
𝑛  , 𝑎𝑛𝑑 𝑌𝑡(0) = 𝑌(𝑡 +  𝜃), 𝑒𝑛𝑐𝑜𝑑𝑒𝑠 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑓𝑜𝑟 𝜃 ≤ 0.   

Suppose the listed hypotheses are fulfilled, 

H1 Continuity of  the dynamics :   f : 𝕋 𝑋 𝐴  → ℝ is jointly continuous, 

where  A  is the history phase space with seminorm  ‖𝑌‖𝐴 

H2  Bounded Impuls ive  per turbat ions :  Each impulse  𝐼𝑘 ∶  ℝ   →

ℝ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 | I k (y )|  ≤  C k   f or  a l l  y  ∈ ℝ 𝑤ℎ𝑒𝑟𝑒  C k  >  0  

H3 Sublinear Growth with memory 

• There  exist 𝜑 ∈ ∁([0, ∞), (0, ∞))  non-decreasing and  
ℎ  ∈  𝐿1 (𝕋, ℝ+)    𝑠𝑢𝑐ℎ |𝑓(𝑡, 𝑢)| ≤ ℎ(𝑡) 𝜑( ‖𝑌‖𝐴), (𝑡, 𝑢)  ∈  𝕋 𝑋 𝐴   

 

• Critical Threshold Condition:  

There exist N > 0 satisfying  

𝑁

𝑘𝑑[∫ ℎ(𝑠)𝜑(𝑁)𝛥(𝑠) +  ∑ 𝐶𝑘 +  𝑘𝑑|𝜑(0)| +  𝑁𝑑||𝜑||𝐴]𝑁
𝑘=1

𝑑

0

> 1 

where kd = sup[k(t) : t ∈ [0, d]  and Nd = sup[N (t) : t ∈ [0, d]]. 

Under these conditions problem (3.1) has at least one solution 

Proof 

We begin by reformulating the problem as problem in a fixed point structure, 

after which  we analyze the corresponding operator. 

                                 N (t)  =  φ(t) 

      
.     
φ(0) + ∫ 𝑓(𝑠, 𝑌𝑠)

𝑡

0
 𝛥𝑠 + ∑ 𝐼𝑘(𝑌(𝑡))0<𝑡𝑘<𝑡  



Exploring solution existence for quantum dynamics equations... 

81 
 

d 

 

If t ∈ [0, d], the fixed point of N obviously correspond to the solutions   of equation 

(3.1). Thus, our goal is to demonstrate that N has at least a fixed point. 

Consider the function  y(.) : (-∞, d) → R which is defined as follows 

         y(t) =         φ(0), if t ∈ [0, d] 

 
.       

φ(t),    if  t ∈ (−∞, 0] 

Thus, let 𝑦0 =  𝜑. For each Z ∈ C([0, d]) with 𝑍0 = 0 we defined the  function Z̃ as 

follows: 

Z̃(t) =    
Z(t), if t ∈ [0, d] 

.
 

  0,   if t ∈ (−∞, 0] 

If h(.) satisfies 

h(t) = φ(0) + ∫ 𝑓(𝑠, 𝑦(𝑠))
𝑡

0
 𝛥𝑠 + ∑ 𝐼𝑘(𝑌(𝑡−))0<𝑡𝑘<𝑡  

Z(t) = ∫ 𝑓(𝑠, 𝑍˜𝑠  + 𝑦𝑠)
𝑡

0
 𝛥𝑠 + ∑ 𝐼𝑘(𝑌(𝑡−))0<𝑡𝑘<𝑡  

Set 𝐴𝑑
0 = [Z ∈ Ad : Z0 = 0] 

for any Z ∈  𝐴𝑑
0   result to         

||Z||B0 = ||Z||B + sup[|Z(s)| : 0 ≤ s ≤ d] = sup[|Z(s)| : 0 ≤ s ≤ d]. 

Thus (Ad||.||𝐴𝑑
0) is a locally convex space. Given that  h : 𝐴𝑑

0 → 𝐴𝑑
0 

defined by 

           0, t ≤ 0 

(hZ)(t) =                 ∫ 𝑓(𝑠, 𝑍˜𝑠  + 𝑦𝑠)
𝑡

0
 𝛥𝑠 + ∑ 𝐼𝑘(𝑌(𝑡𝑘

−))0<𝑡𝑘<𝑡  + 𝑍(𝑡𝑘
−), t∈ [0, 𝑑] 

Stage 1 

To show continuity of h 

Consider a sequence [zn] such that zn → z in 𝐵𝑑
0 Therefore, we obtain 

|h(Zn)(t) − h(Z)(t)| ≤ ∫ |𝑓(𝑠, 𝑍˜𝑛𝑠  + 𝑦𝑠)
𝑡

0
− 𝑓(𝑠, 𝑍˜𝑠 + 𝑦𝑠)| 𝛥𝑠 + 

∑ |𝐼𝑘(𝑍𝑛(𝑡) +  𝑦(𝑡))  −  𝐼𝑘(𝑍(𝑡𝑘)  +  𝑦(𝑡𝑘)|𝑛
𝑘=1  

Hence, 

||ℎ(𝑍𝑛)(𝑡) −  ℎ(𝑍)(𝑡)||𝐴𝑑
0

  ≤ ||f (., Z̃n(.)+y(.))−f (., Z̃(.)+y(.)||L1 + 

∑ |𝐼𝑘(𝑍𝑛(𝑡) +  𝑦(𝑡))  −  𝐼𝑘(𝑍(𝑡𝑘)  +  𝑦(𝑡𝑘)|𝑛
𝑘=1  

Thus, ||ℎ(𝑍𝑛)(𝑡) −  ℎ(𝑍)(𝑡)||𝐴𝑑
0

 
→ 0 as n →∞. 
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Stage 2 

Mapping bounded set in bounded sets 

We shall demonstrate that g i v e n  any arbitrary q > 0 there exist a positive  

constant l such that, for every z ∈ Bq, the following holds 

||yt + Z̃t||A ≤ ||yt||A + ||Z̃t||A ≤ 

k(t) sup[|y(s)| : s ∈ [0, 𝑡]] + N (t)||y0||A+ k(t) sup[|Z̃(s)| :s ∈ [0, 𝑡]]  + N 

(t)||Z0||A ≤ kdq + k|ϕ(0)| + Nd||ϕ||A := q∗  

By hypothesis, H1 − H3 for each t ∈ J, we get 

|(h(Z)(t)| ≤  ∫ ℎ(𝑠)𝜑(||𝑦𝑠 +  𝑍˜𝑠||A)∆𝑠
𝑡

0
 + ∑ 𝐶𝑘  ≤  𝜑(𝑞 ∗)𝑛

𝑘=1  + 

∫ ℎ(𝑠)∆𝑠
𝑑

0
 + ∑ 𝐶𝑘

𝑛
𝑘=1  

Then we have 

||h||Bd   ≤ φ(q∗) ∫ ℎ(𝑠)∆𝑠 + ∑ 𝐶𝑘 ≔ 𝑙𝑚
𝑘=1  

Stage 3 

Consider h mapping bounded set in equi-continuous sets 

Let τ1, τ2 ∈ J, 0 < τ1 < τ2. Then we have 

|h(Z)(τ2) − h(Z)(τ1)| ≤ ϕ(r∗) ∫ ℎ(𝑠)∆𝑠 + 
𝜏2

𝜏1
∑ 𝐶𝑘𝜏1 <𝑡𝑘<𝜏2

 

The right hand side approaches zero as 𝜏2  →  𝜏1 due to stages 2 and 3 along 

with non-commutative generalisation of Arsela- Ascoli hypothesis. It remains 

to demonstrate that h translate 𝐴𝑞 into precompact sets. 

Stage 4 

Assumption on results. 

Let Z be an outcome of the integral equation. 

Z(t) = ∫ 𝑓(𝑠, 𝑍˜𝑠 + 𝑦𝑠)
𝑡

0
∆s + ∑ 𝐼𝑘(𝑌(𝑡𝑘

−))0<𝑡𝑘<𝑡  + 𝑍(𝑡𝑘
−)  

By hypothesis 𝐻2, we have 

Z(t) = ∫ ℎ(𝑠)
𝑡

0
 φ(||ys + Z̃s||A)∆s + ∑ 𝐶𝑘0<𝑡𝑘<𝑡            (3) 

But    ||yt + Z̃s||A ≤ ||yt||A + ||Z̃s||A ≤ k(t) sup[|y(s)| : 0 ≤ s ≤ t] + N 

(t)||y0||A+ k(t) sup[|Z(s)| : 0 ≤ s ≤ t] + kb|ϕ(0)| + Nb||ϕ||A 

Let w(t) represent the rhs of the inequality above, then we have 

||xt + Z̃t||B  ≤ w(t) 

As a result, inequality (3) becomes 
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    |Z(t)| ≤ ∫ ℎ(𝑠)𝜑(𝑤(𝑠))∆𝑠
𝑡

0
+ ∑ 𝐶𝑘0<𝑡𝑘<𝑡  

using (3) to define, we have 

𝑤(𝑡)  ≤  kd ∫ ℎ(𝑠)𝜑(𝑤(𝑠))∆𝑠
𝑡

0
+ ∑ 𝐶𝑘0<𝑡𝑘<𝑡 ++ kd|ϕ(0)| + Nd||ϕ||B 

Consequently, 

||𝑤||∞

kd ∫ ℎ(𝑠)𝜑(𝑤(𝑠))∆𝑠
𝑏
0 + ∑ 𝐶𝑘0<𝑡𝑘<𝑡 + 𝑘𝑑|𝜙(0)| + 𝑁𝑑||𝜙||B

 ≤ 1 

Consedering H3 there exists N so that  ||𝑤||∞  ≠ N 

Define  

U = [ z ∈  𝐴𝑑
0  : ||𝑍||𝐴𝑑

0  < 𝑁 + 1]    

 h : Ũ  →  𝐴𝑑
0 is completely continuous.   Given the construction of U, there is 

no z  in the neighbourhood of U  such that Z = λh(Z), for some λ  ∈ (0, 1). So, 

by applying the non-commutative version of Leray-Schauder theorem, it follows 

that in U,  h has a fixed point Z.  

Therefore the system (2) has at least one solution. QED 

Considering Quantum Impulsive Neutral Functional differential Equation of 

the form 

[Y (t) − g(t, Yt)]∆ = f (t, Yt)(η, ξ)  t ∈ [o, d], t ≠  𝑡𝑘, k = 1, 2,  , n 

Y (tk+) − Y (tk−) = Ik(Y (tk))(η, ξ),                                (4) 

and 

Y0 = ϕ ∈ A 

The map y ∈  𝐴𝑑 is considered a resu l t  to system (4) if y satisfies  the 

dynamic system [Y (t)    g(t, Yt)]∆ = f (t, Yt)(η, ξ) for all t ∈ I  [tk], k = 1, 2, ..., n. 

Also, for each k = 1, 2, ..., n, the function y must satisfy the jump condition Y (tk+) 

− Y (tk−) = Ik(Y (tk))(η, ξ), and Y0 = ϕ ∈ A. 

Theorem 4  Let f : I × A → R be continuous where I = [0,d] ⊂

𝕋 (𝑎 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒)𝑎𝑛𝑑  𝐴 𝑖𝑠 𝑎 𝑝ℎ𝑎𝑠𝑒 𝑠𝑝𝑎𝑐𝑒 

Assume that hypothesis (H2) is satisfied along with the following conditions: 

H4 The function  g  : I × B → Rn  is continuous, also completely continuous, and satisfies  

• For any bounded set  Q ⊆ ((−∞, d], R), the family  [t → g(t, yt) | y ∈ Q] is equicontinuous 

in C((−∞, d], Rn).  

• Growth condition: |g(t, u)| ≤ c1||u||B + c2,     , t ∈ [0, d], u ∈ B                                    (5) 

H5 There exist a non-decreasing continuous  φ : [0, ∞) → (0, ∞) and h ∈ 

L1(I, R+) such that 
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|f (t, y)| ≤ h(t)φ(||u||A, for almost every t ∈ I and u ∈ A.                  (6) 

Additionally, there exist N∗ > 0 such that 

𝑁∗

(1(1−𝑐1𝑘𝑑))[𝑘𝑑|𝑔(0,𝜑(0))|+ 𝑐2𝑘𝑑+𝛼+𝑘𝑑𝜑(𝑁∗) ∫ ℎ(𝑠)∆𝑠]
𝑑

0

                (7) 

where α = kd|ϕ(0)| + Nd||ϕ||A. 

Under H_2 , H_4 and H_5 , the infinite delayed quantum dynamic problem (3.4) 

admit at least a solution. 

Proof 

Step 1 

We define the nonlinear operator  

           𝑃 ∶ 𝐴𝑑
0   →  𝐴𝑑

0  𝑎𝑠 

𝑃𝑧(𝑡) =  [
0, 𝑡 ≤ 0

𝑔(0, 𝜑(0)) −  𝑔(t, 𝑧˜𝑡 +  𝑦𝑡)  +  ∫ 𝑓(t, 𝑧˜𝑠 +  𝑦𝑠)
𝑡

0
∆𝑠 t ∈ [0, 𝑑]

                      

Where 𝑧˜𝑡  𝑎𝑛𝑑  𝑦𝑡 decompose the history – dependent state  z_t 

Step2  

Compactness of P 

Continuity follows from f and g being continuous, by H_4, g maps 

bounded set into equicontinuous family and the integral term is 

compact via the Arzela-Ascoli theorem 

Step3 

A priori bounds via Homotopy: 

Assume  

𝑧 =  𝜆𝑃𝑧 𝑓𝑜𝑟 𝜆𝜖(0,1). 𝐹𝑜𝑟  𝑡 𝜖[0, 𝑑]: |𝑧(𝑡)|  

≤ |𝑔(0, 𝜙(0))| +   𝑐1||𝑧˜𝑡 +  𝑦𝑡||𝐵 +  𝑐2 ∫ ℎ(𝑠)𝜙(||𝑧˜𝑠 +  𝑦𝑠||𝐴 ∆𝑠,
𝑡

0

 

Where w(t) =  𝑘𝑑 sup𝑠≤𝑡|𝑧(𝑠)|+ ∝ ,  using H_5  , we derive 

w(t) ≤ 
1

1−𝑐1𝑘𝑑
[𝑘𝑑|𝑔(0, 𝜑(0))| +  𝑐2𝑘𝑏 + 𝛼 + 𝑘𝑑 ∫ ℎ(𝑠)𝜑(𝑤(𝑠))∆𝑠

𝑑

0
 

By H_5 , ||𝑤||  ≠ 𝑁∗ , ensuring no solution exist on 𝜕𝑈∗ , 𝑤ℎ𝑒𝑟𝑒  

𝑈∗ = [𝑧 𝜖 𝐴𝑑
0  |  ||𝑧|| <   𝑁∗ + 1]. 

Step 4 

Leray-Scauder fixed point theorem 

The  operator h∗  :  Ũ  →  B0 
d is completely continuous. Given the definition of U∗ 

, there is no z  ∈  δU∗ such that z = λp∗(z), for some λ ∈   (0, 1). By applying the 
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non-linear alternative of Leray-Schauder principle,  the operator P is compact 

and P((𝑈 ∗)  ⊆ 𝑈∗  . By the non-linear alternative, P has a fixed point in   𝑈∗  

yielding a result to  (4),  it follows that h∗ has a fixed point z in U∗. 

Consequently, system (4) has at least a solution 

 

4. CONCLUSION 

The investigation of solution existence for quantum dynamics equations 

with infinite delay on time scales presents a significant advancement in 

bridging the gap between abstract mathematical frameworks and their 

applicability to quantum systems with memory-dependent phenomena. 

This work establishes rigorous criteria for the existence of solutions to such 

equations, leveraging the hybrid nature of time-scale calculus to unify 

continuous and discrete dynamical perspectives under a single formalism. 

By employing functional analytic techniques, including fixed-point 

theorems tailored to time scales and carefully constructed weighted function 

spaces, we address the challenges posed by infinite delay ensuring that the 

non-local historical dependence does not compromise the well-posedness of 

the system. 

Our results demonstrate that, under mild assumptions on the delay kernel 

and the quantum interaction potential, solutions can be guaranteed in both 

the forward and backward directions of the time scale. This extends classical 

existence theorems for delay differential equations to quantum settings with 

time-scale heterogeneity, offering a versatile tool for modeling systems such 

as quantum control processes with delayed feedback or spin networks 

subject to decoherence with memory effects. Notably, the methodology 

accommodates both regulated and singular delay structures, broadening its 

applicability to diverse physical scenarios. 

While the current work focuses on existence, future research could explore 

uniqueness and stability properties, as well as numerical approximations for 

these equations. Extending the framework to stochastic time scales or coupling 

it with nonlinear quantum master equations may further enhance its 

relevance to open quantum systems. This study not only enriches the 

theoretical foundation of quantum dynamics on time scales but also paves 

the way for practical innovations in quantum technologies where temporal 

non-locality and hybrid time domains play a critical role. 
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