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Abstract 

We define for each 𝛼 ∈ [0,1], the nested 𝛼 −level sets for fuzzy sets and the nested 

𝛼 −intervals for fuzzy numbers as a generalization of the nested intervals of the Real line 

(ℝ). Furthermore, we prove two essential theorems: the nested 𝛼 −level sets theorems and 

the intermediate-value theorem for fuzzy numbers. The results generalize existing results 

in the literature. 
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1. INTRODUCTION 

Some of the basic results in Real analysis are the theorems of nested intervals, the 

intermediate value theorem, Bolzano Weistress theorem amongst others. See 

Apostle (1974).  These are crucial results as they form the background for the study 

of deferential and integral calculus. The calculus being defined on the Real line is 

restrictive since it is crisp set based. The crisp set is rigid in the sense that the 

membership value of elements is either 1 or 0. It’s by nature precise and thus with-

it ambiguity, imprecision which are characteristic of real-world situations and 

complex systems can’t be modelled sufficiently. But a more general definition 

called fuzzy set introduced by Zadeh (1965) which has recently received a lot of 

attention, is an efficient tool for describing imprecision. Fuzzy set theory has 

tremendous power for application in modeling against the crisp set which is 

conceptually precise. Thus, there are numerous extensions of the concept in other 

research areas. One of such is the consideration of fuzzy-valued functions for 

fuzzy differentiation and integration. The Hukuhara differentiability (H-

differentiability) of the fuzzy-valued functions arrest such restrictions. It consists 

of increasing the diameter of solutions level sets as time increases; an improvement 
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on traditional differentiability. An improvement of the H-differentiability is 

presented in Armand et al. (2018) as they introduced the strong and weak 

generalized differentiability. Here, derivative exists and the solution of a fuzzy 

differential equation may have decreased length of the support, but the 

uniqueness is lost. However, this disadvantage is  seen as an advantage since it is 

possible to choose the singular points where the support of the solution changes 

its monotonicity. This helps us to obtain reversible solutions, stable and almost 

periodic solutions and asymptotic behavior of solutions to the fuzzy differential 

equations(See Stefanini and Bede, 2009). The approach followed by Stefanini 

(2010) generalized Hukuhara differentiability (gH-derivative) introduced in 

Stefanini and Bede (2009), which is based on a generalization of the H-difference 

between two intervals. In Bede and Gal (2005), the important theorems in fuzzy 

arithmetic, such as a fuzzy intermediate value theorem, Bolzano’s theorem, mean 

value theorem for integral and mean value theorem for gH-derivative and Rolles 

Theorem were stated and proved for fuzzy-valued functions.    

In this work, we define, characterize and prove some results that will pave way 

for the consideration of differentials of Real-valued function defined on fuzzy sets. 

This will allow for the generalization of function defined on a collection of sets 

(closed) and crisp set in the literature. This approach is significant as the emphasis 

of our proposed fuzzy differential depends on an ambient space not necessarily 

on the function value. 

 

2. RESULTS AND DISCUSSION 

The results of this study are presented as follows: 

1: Section [2.1]:  We define and characterize the concept of nested 𝛼 −level sets for 

fuzzy sets and nested 𝛼 −interval for each 𝛼 ∈ [0,1] for fuzzy numbers. We show 

that they generalize the nested intervals of the Real line. Further we state and 

prove the Nested Theorem for fuzzy sets and show results it generalizes. 

2: Section [2.2] : We state and prove the Intermediate value Theorem for 

continuous function defined on a fuzzy set. We substantiate our claims of 

generality by stating and proving some corollaries. 

Nested 𝜶 −level sets and the Nested 𝜶 −level sets Theorem  

We recall the following results from set theory: 

For any two non-empty sets 𝐴 and 𝐵.  

(i) 𝐴 △ 𝐵 = 𝐴\𝐵 ⋃  𝐵\𝐴  

(ii) If 𝐴 ⊂ 𝐵 then 𝐴 △ 𝐵 = 𝐵\𝐴  

(iii) If 𝐴 = 𝐵 then 𝐴 △ 𝐵 = ∅  
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The first definition and remarks show a generation of nested intervals of the Real 

line.  Here, instead of having intervals of the Real line, we have intervals defined 

by level sets of a fuzzy number, a generalization of intervals of the Real line.   

Definition 1 (Enclosed level sets of a fuzzy set): Let 𝐴 be a fuzzy set of 𝑋 (i.e there 

is 𝜇: 𝑋 → [0,1] such that 𝜇(𝑥) = 0 if 𝑥 ∉ 𝐴 and 𝜇(𝑥) ∈ (0,1] if 𝑥 ∈ 𝐴 ). Let 𝐴𝛼 = {𝑥 ∈

𝑋: 𝜇(𝑥) ≥ 𝛼 } be an 𝛼 −level set of 𝐴 for any fixed  𝛼 ∈ (0,1]. 

Define [A]γ = {𝐴𝛾: 𝐴𝛼 ⊆ 𝐴𝛾 ⊆ 𝐴𝛽   𝛼, 𝛾, 𝛽 ∈ [0,1]}                            (1) 

Then we call [A]γ an enclosed level set of 𝐴 for any 𝛼 and 𝛽. Note that 𝛼 ≤ 𝛾 ≤ 𝛽.  

Definition 2 (Nested level sets): Let 𝐴 be a fuzzy set of 𝑋 ,  𝐴𝛼  an  𝛼 −level set of 

𝐴 for any 𝛼 ∈ [0,1] and [A]γa collection of level sets of 𝐴  for any 𝛼, 𝛽, 𝛾 ∈ [0,1].  

Then the sequence 

[𝐴]𝑖 = {𝐴𝛾: 𝐴𝛼𝑖 ⊆ 𝐴𝛾 ⊆ 𝐴𝛽𝑖   𝛼𝑖 , 𝛽𝑖 , 𝛾 ∈ [0,1]} 𝑖 = 1,2, ....                    (2) 

such that [𝐴]𝑖+1 ⊂ [𝐴]𝑖  for each 𝑖, is called a sequence of nested level sets of fuzzy 

set 𝐴. 

Remarks 3:  

(i) Suppose in Definition 1, 𝑋 = ℝ .  Then 𝐴 is a fuzzy number of ℝ  if 𝑢 ∶  ℝ →

 [0, 1] is a membership function of ℝ  satisfying the following properties: 

(a) 𝑢 is upper semi-continuous on ℝ, 

(b) 𝑢 is fuzzy convex (i.e C={ 𝑥 ∈  ℝ such that : 𝑢(𝑥) ∈ [0,1]} is a convex set) 

(c) 𝑢 is normal (i.e there exist 𝑥 ∈  ℝ such that : 𝑢(𝑥) = 1), and  

(d) 𝑐𝑙{𝑥 ∈  ℝ ∶ 𝑢(𝑥)  >  0} is compact with respect to the usual topology on ℝ , 

where cl denotes the closure of a subset.  

Thus, 

𝐴𝛼 = {𝑥 ∈ ℝ: 𝜇(𝑥) ≥ 𝛼, 𝛼 ∈ (0,1]} is a closed interval. 

So, the enclosed level set of Equation (1) is an enclosed closed interval and [𝐴]𝑖 𝑖 =

1,2, …of Equation (2) is a sequence of level sets of fuzzy number 𝐴 . If in addition 

we have that  [𝐴]𝑖+1 ⊂ [𝐴]𝑖, then [𝐴]𝑖is a sequence of nested level sets of fuzzy 

number 𝐴.   

(ii) Suppose in (i) of Remarks 3,  𝐴 is a crisp Real number (i. e. 𝑢 ∶  ℝ →  {0, 1}), 

then  

[𝐴]𝑖 = {𝑥 ∈ 𝐴 ∶ ai ≤ 𝑥 ≤ bi } 𝑖 = 1,2, …                     (3) 

is a sequence of closed intervals. If in addition we have that  [𝐴]𝑖+1 ⊂ [𝐴]𝑖, then 

[𝐴]𝑖is a sequence of nested intervals.   
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Example: Consider a fuzzy set A with the membership function 𝑢: [−10,10] →

[0,1] defined as  𝑢(𝑥) = ℯ(−0.02(x − 1)2) . Then A is a fuzzy set of  "Real numbers in 

the interval [−10,10]  close to 1". Thus, membership values of the Real numbers 

increase as 𝑥 gets closer to 1. Also, A is a fuzzy number as [−10,10] ⊂ ℝ  and  𝑢 

satisfies (i) (a) - (d) of Remarks 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Graph of membership function 𝑢: [−10,10] → [0,1] such that  𝑢(𝑥) =

ℯ(−0.02(𝑥 − 1)2)     

Let 𝛼 = 0.5 then 𝐴0.5 = [−4,7]. If 𝛼 = 0.8, 𝛾 = 0.6 𝑎𝑛𝑑 𝛽 = 0.4. then [A]0.6 = A0.6 =

[−4,6] is an enclosed 0.6 −level set of A. If 𝛼1 = 0.8, 𝛼2 = 0.7, 𝛼3 = 0.6, 𝛽1 =

0.3, 𝛽2 = 0.4, 𝛽3 = 0.5. Then  [A]1 = {𝐴𝛾: 𝐴0.8 ⊆ 𝐴𝛾 ⊆ 𝐴0.3 }, [A]2 = {𝐴𝛾: 𝐴0.7 ⊆ 𝐴𝛾 ⊆

𝐴0.4 }  and [A]3 = {𝐴𝛾: 𝐴0.6 ⊆ 𝐴𝛾 ⊆ 𝐴0.5 }. Clearly, [A]3 ⊆  [A]2 ⊆  [A]1, thus [A]i is a 

sequence of nested level sets of fuzzy set 𝐴 for i = 1,2 and 3. 

In the sequel, denote a fuzzy set 𝐴 as a fuzzy set of  𝑋 (any non-empty set) with the 

membership function 𝜇: 𝑋 → [0,1] and a fuzzy number 𝐴 as a fuzzy set of ℝ (the 

Real line) or a subset of ℝ with the membership function 𝜇: ℝ → [0,1] satisfying (i) 

(a) - (d) of Remarks 2.  

Theorem 4: Let [𝐴]𝑖 be a nested level sets of the fuzzy set 𝐴 for each  𝑖 = 1,2, …     . 

If  𝑙𝑖𝑚{𝑖→∞}(𝐴𝛽𝑖  △ 𝐴𝛼𝑖 ) = ∅,     then there exist a unique 𝐴𝛾0  such that 𝐴𝛾0 ∈  [𝐴]𝑖 

for every i. 

Proof: By Equation 1.2,  𝐴𝛼𝑖 ⊂  𝐴𝛼𝑖+1  and 𝐴𝛽𝑖+1 ⊂  𝐴𝛽𝑖 . Since  𝐴𝛼𝑖 ⊂  𝐴𝛽𝑖 for every  

𝑖, the sequence {𝐴𝛼𝑖 } is nondecreasing and bounded above by  𝐴𝛽1 . Similarly, the 
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sequence {𝐴𝛽𝑖 } is nonincreasing and bounded below by  𝐴𝛼1 . Thus there are 𝐴𝛾0
 

and 𝐴𝛾0
′  such that 𝐴𝛼𝑖 → 𝐴𝛾0

, 𝐴𝛼𝑖 ⊆ 𝐴𝛾0
 and that 𝐴𝛽𝑖 → 𝐴𝛾0

, 𝐴𝛾0
⊆ 𝐴𝛽𝑖  as i → ∞. 

Using the fact that 𝐴𝛽𝑖 \𝐴𝛼𝑖 → ∅ as i → ∞, we have that 𝐴𝛾0
= 𝐴𝛾0

′   and 𝐴𝛼𝑖 ⊆ 𝐴𝛾0
⊆

𝐴𝛽𝑖 for every 𝑖. Thus  𝐴𝛾0
∈  for every  𝑖. 

Suppose 𝐴𝛾0
 is not unique, then there is  𝐴𝛾1

∈  [𝐴]𝑖 also. Define 𝜖 = 𝐴𝛾1
△ 𝐴𝛾0

. Now 

since 𝐴𝛼𝑖 → 𝐴𝛾0
 and 𝐴𝛽𝑖 → 𝐴𝛾0

 whenever there is an integer N1 such that 𝐴𝛼𝑁𝑖
 ⊃

 𝐴𝛾0
\𝜖;  there is an integer N2 such that 𝐴𝛽𝑁2

⊂   𝐴𝛾0
⋃ 𝜖 . These set relations imply 

that  [𝐴]𝑖 cannot contain 𝐴𝛾1
 for each  𝑖 beyond N1 and N2 . Then 𝐴𝛾1

is not in every 

[𝐴]𝑖.  The proof is complete.  

Corollary 5: Let [𝐴]𝑖 be a nested intervals of  level sets of the fuzzy number 𝐴 for 

each  𝑖 = 1,2, …     . If  𝑙𝑖𝑚{𝑖→∞}(𝐴𝛽𝑖 − 𝐴𝛼𝑖 ) = 0 (where(𝐴𝛽𝑖 − 𝐴𝛼𝑖 ) =

𝑖𝑛𝑓 𝑎∈𝐴𝛽𝑖 ,𝑏∈𝐴𝛼𝑖 
∣ 𝑎 − 𝑏 ∣ ),  then there exist a unique 𝐴𝛾0  such that 𝐴𝛾0 ∈  [𝐴]𝑖 for 

every i. 

Proof: The proof follows from the proof of Theorem 4 as a fuzzy set is a 

generalization of the fuzzy number. 

Corollary 6: Let [𝐴]𝑖 be a nested intervals of intervals of the Real line for each  𝑖 =

1,2, …     . If  𝑙𝑖𝑚{𝑖→∞}(𝐵𝑖 − Ai) = 0 (where(𝐵𝑖 − Ai) = 𝑖𝑛𝑓 𝑎∈Ai,𝑏∈Bi
∣ 𝑏 − 𝑎 ∣ ),  then 

there exist a unique 𝐴0  
 such that 𝐴0 

∈  [𝐴]𝑖 for every i. 

Proof: The proof follows from the proof of Theorem 4  as a fuzzy number is a 

generalization of the Real number.  

Corollary 7 (Theorem of Nested Intervals of the Real line): Let [𝐴]𝑖 be a nested 

intervals of the Real number 𝐴 for each  𝑖 = 1,2, …     . If  𝑙𝑖𝑚{𝑖→∞}(bi − ai) = 0 ,  then 

there exist a unique 𝑥𝑜 such that 𝑥𝑜 ∈  [𝐴]𝑖 for every i. 

Proof: The proof follows from the proof of Theorem 4 as a fuzzy number is a 

generalization of the Real number. 

Next, we prove the intermediate value theorem for fuzzy sets. The result is 

significant because it is fuzzy set based. Thus, paving the way for the foundation 

of a fuzzy differential calculus of functions defined on fuzzy sets. 

Intermediate-value Theorem for level sets 

Theorem 8:  Let [𝐴] = {𝐴𝛾: 𝐴𝛼 ⊆  𝐴𝛾 ⊆  𝐴𝛽  𝛼, 𝛽, 𝛾 ∈ [0,1]} be a collection of closed 

sets of a fuzzy set 𝐴 of 𝑋 and let  𝑓: [𝐴] → ℝ be continuous on [𝐴], 𝐴𝛾𝑖
∈  [𝐴]  for 

each  𝑖 and   𝐴𝛼𝑖 →  𝐴𝛼0 . Then  𝐴𝛼0 ∈ [𝐴] and  𝑓(𝐴𝛼𝑖 ) → 𝑓(𝐴𝛼0 ).  

Proof: Since for each  𝑖,  𝐴𝛾𝑖
⊇ 𝐴𝛼 by the theorem of nested sequence of sets. 

Similarly,  𝐴𝛼0 ⊆  𝐴𝛽 so 𝐴𝛼0 ∈ [𝐴]. If 𝐴𝛼 ⊆  𝐴𝛼0 ⊆  𝐴𝛽 , then 𝑓(𝐴𝛼𝑖 ) → 𝑓(𝐴𝛼0 ). Same 

holds if 𝐴𝛼0 = 𝐴𝛼  or 𝐴𝛽 . The proof is complete. 
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Theorem 9 (Intermediate-value Theorem for a Fuzzy Number):  Let [𝐴] =

{𝐴𝛾: 𝐴𝛼 ≤ 𝐴𝛾 ≤ 𝐴𝛽  𝛼, 𝛽, 𝛾 ∈ [0,1]} be a collection of closed set 𝐴 be a fuzzy number 

and 𝑓: [𝐴] → ℝ continuous on [𝐴], 𝑐 ∈ ℝ, 𝑓(𝐴𝛼 ) < 𝑐 and 𝑓(𝐴𝛽 ) > 𝑐. Then there is 

at least one  𝐴𝛼0 on [𝐴] such that 𝑓(𝐴𝛼0 ) = 𝑐.  

Proof: Put  𝐴𝛼 
1 = 𝐴𝛼 and 𝐴𝛽 

1 = 𝐴𝛽 . Then observe that  𝑓 (
(𝐴𝛼 

1 ⋃ 𝐴𝛽 
1 )

2
) = 𝑐, 

𝑓 (
(𝐴𝛼 

1 ⋃ 𝐴𝛽 
1 )

2
) ≥ 𝑐 or less than 𝑓 (

(𝐴𝛼 
1 ⋃ 𝐴𝛽 

1 )

2
) < 𝑐. If 𝑓 (

(𝐴𝛼 
1 ⋃ 𝐴𝛽 

1 )

2
) = 𝑐, choose  𝐴𝛼0 =

(𝐴𝛼 
1 ⋃ 𝐴𝛽 

1 )

2
 if it equals 𝑐 and the result is shown. If 𝑓 (

(𝐴𝛼 
1 ⋃ 𝐴𝛽 

1 )

2
) > 𝑐, then put  𝐴𝛼 

2 =

𝐴𝛼 
1 and 𝐴𝛽 

2 =
(𝐴𝛼 

1 ⋃ 𝐴𝛽 
1 )

2
. If 𝑓 (

(𝐴𝛼 
1 ⋃ 𝐴𝛽 

1 )

2
) < 𝑐, then put  𝐴𝛼 

2 =
(𝐴𝛼 

1 ⋃ 𝐴𝛽 
1 )

2
  and 𝐴𝛽 

2 = 𝐴𝛽 
1 . 

In each case, we have  𝑓(𝐴𝛼 
1 ) < 𝑐 and 𝑓(𝐴𝛽 

1 ) > 𝑐. Next, if 𝑐 = 𝑓 (
(𝐴𝛼 

2 ⋃ 𝐴𝛽 
2 )

2
) the 

result is shown. If 𝑓 (
(𝐴𝛼 

2 ⋃ 𝐴𝛽 
2 )

2
) < 𝑐, we put 𝐴𝛼 

3 =
(𝐴𝛼 

2 ⋃ 𝐴𝛽 
2 )

2
 and 𝐴𝛽 

3 = 𝐴𝛽 
2 .  

Continuing, we find 𝐴𝛼0 on [𝐴] in a finite number of steps or we find a sequence 

[𝐴]𝑖  of closed intervals of closed intervals each of which each one of the two halves 

of the proceeding one, and for which we have 𝐴𝛽𝑖 − 𝐴𝛼𝑖 = (𝐴𝛽
1 − 𝐴𝛼 

1 )/2𝑖−1, 

𝑓(𝐴𝛼𝑖 ) < 𝑐, 𝑓(𝐴𝛽
1 ) > 𝑐 for each 𝑖. From Corollary 4 , there is a unique interval in all 

these intervals and lim 𝐴𝛼𝑖 = 𝐴𝛼0 
𝑖→∞ 

   and lim 𝐴𝛽𝑖 = 𝐴𝛼0 
𝑖→∞ 

. By Theorem 7 , we conclude 

that 𝑓(𝐴𝛼𝑖 ) → 𝑓(𝐴𝛼0 ) and 𝑓(𝐴𝛽𝑖 ) → 𝑓(𝐴𝛼0 ). From 𝐴𝛽𝑖 − 𝐴𝛼𝑖 = (𝐴𝛽
1 − 𝐴𝛼 

1 )/2𝑖−1, 

𝑓(𝐴𝛼𝑖 ) < 𝑐, 𝑓(𝐴𝛽
1 ) > 𝑐 for each 𝑖, it follows that 𝑓(𝐴𝛼0 ) ≤ 𝑐 and 𝑓(𝐴𝛼0 ) ≥ 𝑐. This 

implies that 𝑓(𝐴𝛼0 ) = 𝑐. The proof is complete. 

Corollary 10 (Intermediate-value Theorem for Interval of the Real Number):  Let 

[𝐴] = {𝐴0: 𝐴 ≤ 𝐴0 ≤ 𝐵 } be a collection of closed intervals the Real number and 

𝑓: [𝐴] → ℝ continuous on [𝐴], 𝑐 ∈ ℝ, 𝑓(𝐴) < 𝑐 and 𝑓(𝐵) > 𝑐. Then there is at least 

one  𝐴0 
on [𝐴] such that 𝑓(𝐴0 

) = 𝑐. 

Proof: The proof follows from the proof of Theorem 9 as the 𝛼 − level sets of a 

fuzzy number generalize the interval of the Real line. 

Corollary 11 (Intermediate-value Theorem for the Real Number):  Let [𝐴] =

{𝑥: 𝑎 ≤ 𝑥 ≤ 𝑏 } a closed interval of the Real line and 𝑓: [𝐴] → ℝ continuous on [𝐴], 

𝑐 ∈ ℝ, 𝑓(𝑎) < 𝑐 and 𝑓(𝑏) > 𝑐. Then there is at least one  𝑥0 
on [𝐴] such that 𝑓(𝑥0 

) =

𝑐. 

Proof: The proof follows from the proof of Theorem 9 as the fuzzy number 

generalizes the Real number. 
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3. CONCLUSION 

In this paper, we have defined, characterized and proved some results that are 

useful in the study of a differential of Real-valued function defined on a fuzzy set 

rather than the fuzzy-valued function in the literature. Our results proved to be 

more natural as the idea of imprecision that exist in a system is actually noticed on 

the ambient space and not necessarily on the function. The results are shown to 

generalize existing results. 
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